[過去ログ]
高木くんがアクセプトされるまで見守るスレ ★4 (1002レス)
高木くんがアクセプトされるまで見守るスレ ★4 http://rio2016.5ch.net/test/read.cgi/math/1688037294/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
746: ◆pObFevaelafK [sage] 2023/07/29(土) 19:24:59.09 ID:3mRZQXR+ Another proof of Legendre's (Oppermann's) conjecture Let m and n be integers. We suppose p_n is the smallest prime number among primes greater than m^2 and consider the following inequalities hold. m^2<p_n<p_(n+1)<(m+1)^2 p_(n+1)-p_n<2m+1 According to Cramer's conjecture, p_(n+1)-p_n<(log(p_n))^2 holds for n≧5. Since according to Dusart's inequality, p_n<n(log(n)+log(log(n))) holds for n≧6, log(p_n)<log(n(log(n)+log(log(n)))) holds. p_(n+1)-p_n<(log(n(log(n)+log(log(n)))))^2 By the way, m+1>√p_(n+1) holds. Since according to Dusart's inequality, p_n>n(log(n)+log(log(n))-1) holds for n≧2, √p_(n+1)>√((n+1)(log(n+1)+log(log(n+1))-1)) m+1>√((n+1)(log(n+1)+log(log(n+1))-1)) 2m+1>2√((n+1)(log(n+1)+log(log(n+1))-1))-1 holds. 2m+1 is the distance between m^2 and (m+1)^2. We consider the following inequality. (log(n(log(n)+log(log(n)))))^2<2√((n+1)(log(n+1)+log(log(n+1))-1))-1 It is confirmed that this inequality holds for n≧73 by numeric computation. Therefore, p_(n+1)-p_n is smaller than 2m+1 for m≧19. http://rio2016.5ch.net/test/read.cgi/math/1688037294/746
747: ◆pObFevaelafK [sage] 2023/07/29(土) 19:59:17.49 ID:3mRZQXR+ >>746 これは間違い。 http://rio2016.5ch.net/test/read.cgi/math/1688037294/747
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s