[過去ログ] 高木くんがアクセプトされるまで見守るスレ ★4 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
647(1): ◆pObFevaelafK [sage] 2023/07/26(水)04:46 ID:VqCU3DJB(1/17)
>>645
p_(n+1)-p_n<(logp_n)^2 (for n≧5)は数学的に正しい。
>>646
何を書いているのでしょうか?その後に、rでグループ化するのを昇順から降順に変えると
n≧3の全てのnに対してpとrの一対一の関係を設定できると書いています。
649(1): ◆pObFevaelafK [sage] 2023/07/26(水)08:39 ID:VqCU3DJB(2/17)
>>631 推敲版
Another proof of Lengedre conjecture
Let m and n be integers. We suppose p_n is the smallest prime number
among primes greater than m^2 and consider the following inequalities hold.
m^2<p_n<p_(n+1)<(m+1)^2
According to Cramer's conjecture,
p_(n+1)-p_n<(log(p_n))^2
holds for n≧5.
Since according to Dusart's inequality,
p_n<n(log(n)+log(log(n))) holds for n≧6,
log(p_n)<log(n)+log(log(n)+log(log(n)))
holds.
p_(n+1)-p_n<(log(n)+log(log(n)+log(log(n))))^2
By the way,
m+1>√p_(n+1)
holds. Since according to Dusart's inequality,
p_n>n(log(n)+log(log(n))-1) holds for n≧2,
√p_(n+1)>√(n(log(n)+log(log(n))-1))
m+1>√(n(log(n)+log(log(n))-1))
2m+1>2√(n(log(n)+log(log(n))-1))-1
holds. 2m+1 is the distance between m^2 from (m+1)^2.
We consider the following inequality.
(log(n)+log(log(n)+log(log(n))))^2<2√(n(log(n)+log(log(n))-1))-1
It is confirmed that this inequality holds for n≧75 by numeric computation.
Therefore, p_(n+1)-p_n is smaller than 2m+1 for m≧19.
650(1): ◆pObFevaelafK [sage] 2023/07/26(水)08:42 ID:VqCU3DJB(3/17)
>>648
rの昇順によるグループ化で一対一の関係が設定できないと書いているは4ページだ。
論文を読まずに何を書いているのか?
653(2): ◆pObFevaelafK [sage] 2023/07/26(水)10:31 ID:VqCU3DJB(4/17)
>>651
2022年6月版ではn=17の昇順のアルゴリズムは4ページだ
>>652
>高木くんのは突っ込みどころ満載
全然違う、完全に正しい論文に対して一人で発狂しているだけ
>論文誌に載りっこない
私が解決した問題は12問で、Legndre予想は他者が理解しづらいであろう論文のうちの一つ
657(1): ◆pObFevaelafK [sage] 2023/07/26(水)11:02 ID:VqCU3DJB(5/17)
>>654
3ページはそうで、4ページのn=17の後半部分で昇順から降順に変わる
658: ◆pObFevaelafK [sage] 2023/07/26(水)11:04 ID:VqCU3DJB(6/17)
>>654
私の著作物を引用記号なしでここに転載するのは止めてもらいたい
660(1): ◆pObFevaelafK [sage] 2023/07/26(水)11:23 ID:VqCU3DJB(7/17)
>>659
3ページに昇順のアルゴリズムがあるということは書いていません。3ページには、n≧3の全てのnで
r=2とr=3に対してグループ化を行い、pとrの一対一の関係を設定できるということを証明しています。
何度も書いていますが、アルゴリズムが昇順に変わるのは、4ページのn=17の後半の部分です。
663(1): ◆pObFevaelafK [sage] 2023/07/26(水)13:08 ID:VqCU3DJB(8/17)
>>662
>降順の場合、2,3より大きいグループで対応をとれなかった合成数pが後回しにされるため
>後回しにされたpがr=2とr=3で対応がとれることを保証する必要があります。
後回しにしたとしても、2や3の倍数が後回しにされるので、r=2やr=3で関係を設定できなくなる
ことはありません。
665(1): ◆pObFevaelafK [sage] 2023/07/26(水)13:58 ID:VqCU3DJB(9/17)
>>664
>>621で
>pの素因数rにより降順でpをグループ化して、そのグループごとにpの昇順(降順でもいい)でpに対して
>rの倍数としてrを設定していく。これにより、実際のrとは異なるrとして関係を設定することになる。
>前にも書いたが、pが元の集合とrが元の集合の間で元と元の間に線を結んで紐を付けるということを行う。
>rが既に設定している値であれば、その値を飛ばしそれより大きいrの倍数をrとして関係を設定する。
>グループ化したpの個数が1<r<nに収まるq(rに訂正)の倍数の個数よりも大きい場合には、rより小さい素数の倍数で
>あるpに関係を設定することを後回しにする。
と書いている。これと論文を読んでくれ。降順のルールはこれであり、普通の人がこれを読むと命題Bがn≧3の全ての
nで一対一のpとrの関係を設定できることが分かるはずだ。分からなければ分からないで結構だが、同じようなレスを
繰り返すのは止めてくれ。664が何を書こうと、この論文が数学的に正しいことは変わらない。
670(2): ◆pObFevaelafK [sage] 2023/07/26(水)15:40 ID:VqCU3DJB(10/17)
>>666
>3ページで示したというr=2は、昇順であり、示したか否かはおいておいて、降順のものと別です。
私が示したというのは、3ページのr=2に対しては
>・When n=2m and m>1
>・When n=2m+1 and m>0
と書いている部分であり、昇順も降順も関係がない。全く論文を読まずに
下らないレスをするのを止めろ。
>>667
>まともな評価はいらないと思います
私の論文を読んでいない667が勝手なことを書くな。
671: ◆pObFevaelafK [sage] 2023/07/26(水)15:43 ID:VqCU3DJB(11/17)
そろそろ気付いてもらいたいが、私がここで書かれているのがまともな数学者のレスだと
考えていないし、外から意味不明な声を聞かせるアンチの声も何とも思っていない。
よく、証明者本人に情報工作をする馬鹿がいたものだと思われる。
672: ◆pObFevaelafK [sage] 2023/07/26(水)15:44 ID:VqCU3DJB(12/17)
>>669
未解決問題12問を完全に解決した人間に言う言葉じゃない
674(1): ◆pObFevaelafK [sage] 2023/07/26(水)16:38 ID:VqCU3DJB(13/17)
>>673
その部分の証明自体は降順昇順には関係ないが、例えば、昇順の場合にはr>2の場合で
pを飛ばす場合には、pが偶数であるものを飛ばし、しかもその数は一つのrによるグループ毎に
最大で1個しかないので、最終的にr=2で一対一の関係を設定できないということはない。
何故、この理屈が理解できないのか?
678(1): ◆pObFevaelafK [sage] 2023/07/26(水)19:20 ID:VqCU3DJB(14/17)
>>677
>そもそも、"その部分"とはどこですか?
>>670の論文引用箇所
>高木くんのいう関係ないってどういう意味?
上記の部分に関しては、昇順、降順に依存しない。3ページでfloor関数が出てくる部分
は、r=2やr=3だけでグループ化した場合の計算になっている。
このような簡単な事がわからないで、私にレスをするのは止めてもらいたい。
無理に論文が意味不明で通じないというふりをしているだけであり
このような工作活動を行うことに何の意義があるのだろうか?
>r=2でも最大1個あるのではありませんか?
式の引用をさせるのは止めてもらいたい。677は、意味不明に私の研究をこのスレ
に貼らせて、それで著作権の主張でもするつもりでしょうか?
これで、677にレスをするのは止める
683(1): ◆pObFevaelafK [sage] 2023/07/26(水)21:03 ID:VqCU3DJB(15/17)
>>681
>m=8だが、6.10.14はスキップされたために数は少なくなります。
しつこいな、この計算はr=2だけの場合を行ったときの証明であり、他のrのグループ化
とは関係ない。
>r=2でも最大1個あるのではありませんか?
うるさい、じゃあその場合を示してみろ。r=2単体でグループ化を行うときにrを飛ばす
ということがおきないのにな。全く論文を理解しようともせずに恥の上塗りを続ける
のは681が人をからかうAIだからか?全然面白くも何ともないが。
685: ◆pObFevaelafK [sage] 2023/07/26(水)21:05 ID:VqCU3DJB(16/17)
>>684
ご苦労なこった。K'とK''は同じ値だが何故lが1にならないのか?
691(2): ◆pObFevaelafK [sage] 2023/07/26(水)22:47 ID:VqCU3DJB(17/17)
>>689
floor関数の部分の証明が完全に理解していないふりなので、n=8の場合であれば
n^2<p<n(n+1)を満たすpは65〜71まで、2の倍数は3個。rの数は1<r<nを満たす
rは2〜7までで、2の倍数は3個となり、pとrの個数は等しくなる。こういう計算を
一般的なnで行っているだけで、rのグループ化の順番は全く関係がない。
>なぜr=2だけ最大0個なのか?
floor関数の部分がそれを証明しているから、何故か689だけには分からないようだが。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s