ミレニアム懸賞問題 (635レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
325: ◆Ph05QxAcng [] 2024/04/12(金)01:44 ID:JDoL7Pz6(1/3)
定理20 存在概念と回転概念は同値である
証明
回転しているならば存在している。また動的な空間に於いて、波はまた元の場所に戻ってくるので回転している。よって題意は示された。

定理21 黄金比の長方形が最も美しい長方形である
証明
定理12より最も可換な関係が充満している長方形が最も美しい長方形である。
局所線型空間に於いて、相似が成り立つ関係を考えると、実際に曲率εの歪みがあっても、局所線型空間内で相似が成り立っている関係は成立しているので、相似の概念をこのように拡張すれば、最も可換な相似関係が充満した長方形は黄金比の長方形である。

系21.1 最も美しい三角形は黄金比の三角形である
証明
同様の議論に拠る。
326: ◆Ph05QxAcng [] 2024/04/12(金)01:45 ID:JDoL7Pz6(2/3)
定理22 別の時空に行くエネルギーは1/0=±∞で必要十分である
証明
別の時空であるマルチバースは存在概念から導かれたので、そこに至るには回転している必要がある。また、存在とは主客未分なのでエネルギー流体そのものになれば良い。よって極限まで加熱、或いは極限まで冷却した±∞の値を持つ事で必要十分である。

定理23 ±∞のエネルギーを得る平面の最良の経路は黄金比の螺旋である
証明
今黄金比の長方形の存在を前提に置けば、全ての平面、及び空間が生じる。今、別の時空に行くには、±∞のエネルギーを得て回転している必要がある。今、1:aの比率の螺旋は無限個の相似が含まれるので無限にエネルギーが増幅する。また1:aの比で作られる面積が最小の図形で平面を敷き詰められるのは二等辺三角形が挙げられる。この三角形の中で最も関係が充満しているのが黄金比の三角形であり、この三角形で平面が敷き詰められる。そしてこの黄金比の螺旋は無限個の相似関係と無限個の正方形を含む関係となっており、エネルギーが無限に増幅する最良の経路となる。

系23.1 螺旋で得たエネルギーをまた螺旋の経路で何段階も経て増幅する事が出来る
327: ◆Ph05QxAcng [] 2024/04/12(金)01:45 ID:JDoL7Pz6(3/3)
定理24 ±∞のエネルギーを得たものを半弧の曲線にして回転させればその球内は全て共振して存在が成立する
証明
自明

系24.1 再生医療に応用される
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.038s