ガロア第一論文と乗数イデアル他関連資料スレ18 (468レス)
ガロア第一論文と乗数イデアル他関連資料スレ18 http://rio2016.5ch.net/test/read.cgi/math/1748354585/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
8: 132人目の素数さん [] 2025/05/27(火) 23:08:40.74 ID:mVXlvt9d つづき 下記の謎の数学者 の ”数学に向かない人”の話でも 「絵」に例えています これ“big picture”ですね。 “big picture”が分らないおサルさん(後述)w これでしょうね ;p) (参考) https://youtu.be/q-3IWEyfFQg?t=11https://youtu.be/q-3IWEyfFQg?t=1 数学に向かない人の数学書の読み方。数学者はこうやって読む 謎の数学者 2022/06/07 コメント @gary8593 2 年前 「絵を描くように」という例えが、めちゃくちゃ腑に落ちました。 特に英語の文献を読む時に精読を心がけすぎて、全体像が掴めなくなることがよくあって困ってたので、参考にします。 <文字起こし> 3:19 この読む際にですねまあ先ほど言いました ようにやってはいけない読み方というのは これですねあの一語一句読んでしまうと いう人がですねいるんですね一語一句 3:31 とりあえず1文1文ですね完璧に 読み進めようとしてしまう人それそういう 人はですね実はなかなか あの数学とりわけ純粋数学には向かないん ですね本当にですね 3:45 1文1文をですね完璧に理解して 次に進ん でそれを完璧に理解しようとしてさらに次 に進むみたいなそういう形そういう読み方 をしているとあの絶対にですね数学書と いうのは読み終わらないしそうやって読む ものではないんです 4:42 各節の全体の構造を把握するというのがですね まず最初に行うべきことであって枝葉部分 はですね思い切ってええまあなんですから はしょるというかあまり気にしないで 分からないことがあってもですね とりあえずどんどん進むぐらいのですね そういう気持ちで数学書というのを読んて いくそれがですね実はですね正しい数学書 の読み方なんですね 9:51 まあこれたとえですけれど 例えば ですねこう 絵 を書くことを思い出して ほしい 例えばこうどっかの風景 を見てですねなんか絵を描くそういう ところですね (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1748354585/8
408: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/08/03(日) 09:25:09.66 ID:NbGdsnnL >>406 > 高卒は数学あきらめろ おサル>>10? AI時代 数学AIが出てくれば、高卒でも 数学科のオチコボレさんより上では? あたかも、昔コンピュータの円周率計算で、人の手計算より ずっと多くの桁まで計算可能になった 黎明期のごとし いま、計算の達人 ガウスいても エクセル使う高卒に敵わないだろう と、同じように おサルの時代は 「数学とは厳密なり〜!」が数学科で重視された時代があっただろう これから数学AIが出てきた時代には、それだけじゃぁ 伍者以外の何者でも無いと思うよ (参考)>>7-9 ・<数学と厳密> 渕野 ・テレンスタオ (下記) ・数学に向かない人の数学書の読み方。数学者はこうやって読む 謎の数学者 2022/06/07 https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/ テレンスタオ There’s more to mathematics than rigour and proofs (google訳) 「ポスト厳密」段階 The emphasis is now on applications, intuition, and the “big picture”. This stage usually occupies the late graduate years and beyond. 厳密に考える方法を知ることは極めて重要です。そうすることで、多くのありがちな間違いを避け、多くの誤解を払拭するための規律が得られるからです。 しかし残念ながら、これは意図せぬ結果をもたらし、「曖昧な」あるいは「直感的な」思考(例えば、ヒューリスティックな推論、例からの賢明な外挿、物理学などの他の文脈との類推など)が「非厳密」なものとして軽視されてしまうことがあります 多くの場合、人は最初の直感を捨て去り、数学を形式的なレベルでしか処理できず、数学教育の第二段階で行き詰まってしまいます。 (これは特に、数学論文の読解能力に影響を与える可能性があります。過度に文字通りに解釈する考え方は、論文にたった一つの誤字や曖昧さに遭遇しただけで「コンパイルエラー」につながる可能性があります) 厳密さの要点は、すべての直感を破壊することではなく、良い直感を明確にし、高めながら、悪い直感を破壊するために使用する必要があります 複雑な数学の問題に取り組むことができるのは、厳密な形式主義と良い直感の両方を組み合わせることによってのみです 前者は細かい詳細を正しく処理するために、後者は全体像を正しく処理するために必要です どちらか一方が欠けていると、暗闇の中で手探りで多くの時間を費やすことになります したがって、厳密な数学的思考に十分慣れたら、主題に関する直感を再検討し、新しい思考スキルを使用してこれらの直感を捨てるのではなく、テストして洗練する必要があります。これを行う 1 つの方法は、自分自身に愚かな質問をすることです。もう 1 つは、自分の分野を学び直すことです 理想的な状態とは、あらゆるヒューリスティックな議論が自然にその厳密な対応を示唆し、その逆もまた同様である状態です。そうすれば、脳の両半分を同時に使って数学の問題に取り組むことができるようになります。つまり、「実生活」で既に問題に取り組んでいるのと同じ方法です http://rio2016.5ch.net/test/read.cgi/math/1748354585/408
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s