[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
684
(3): 132人目の素数さん [] 2025/06/22(日) 13:50:52.99 ID:e5q/Q8+J(2/4) AAS
>>683
(引用開始)
>・内包表記には、下記”分出公理図式(内包公理図式)”あるいは”置換公理図式”を使うようです
じゃあ ∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]} の∩の対象が不明確とか文句付けたのはなんなの? ただの言いがかり? 君はチンピラかい?
(引用終り)

ご苦労さまです
1)説明責任という言葉がある。数学でも同じだが
 ある人がある式を書いた。説明責任は、式を書いた人にある
2)さて集合積∩ は、まずは2項演算として定義されるよね
 二つの集合AとBなら、A∩Bで明確だ
 しかし、2項演算で ”Iterated binary operation”(下記)がある
 日本語では 反復二項演算 と訳される
3)では問う
 ∩の反復二項演算として見た”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”
 は、そもそも何者なのか? その説明責任は、この式を書いた者にあるよ
 例えば、有限の反復なのか無限なのか? あるいは、無限反復として最初の幾つかの項を明示的に書いたらどうなるのか?

繰り返すが、説明責任は、
数学では、その式を書いた人にある

>>666より再録する)
https://en.wikipedia.org/wiki/Iterated_binary_operation
Iterated binary operation
(google 和訳)
反復二項演算
数学において、反復二項演算とは、集合S上の二項演算を、反復適用によってSの有限個の要素の列上の関数へと拡張したものである。 [ 1 ]一般的な例としては、加算演算を総和演算に拡張することや、乗算演算を積演算に拡張することがあげられる。集合論的な演算である和と積など、他の演算も反復されることが多い
Σ、Π、∪、∩

さらに、下記がある(英文に戻す)
If S also is equipped with a metric or more generally with topology that is Hausdorff, so that the concept of a limit of a sequence is defined in S, then an infinite iteration on a countable sequence in S is defined exactly when the corresponding sequence of finite iterations converges. Thus, e.g., if a0, a1, a2, a3, … is an infinite sequence of real numbers, then the infinite product
∏i=0〜∞ ai
is defined, and equal to
lim n→∞ ∏i=0〜n ai,
if and only if that limit exists.
(引用終り)
685
(2): 132人目の素数さん [] 2025/06/22(日) 14:13:02.71 ID:Y+ibteSC(2/6) AAS
>>684
まだ分かってなくて草

教えられずとも理解するのが正常人
教えられて理解するのが普通のバカ
教えられても理解できないのがオチコボレの君

>”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”は、そもそも何者なのか?
だからAの部分集合族の共通部分って教えてあげたよね?
集合族の共通部分については
https://en.wikipedia.org/wiki/Intersection_(set_theory)
の「Arbitrary intersections」のところ読めって教えてあげたよね?
部分集合族については
https://ja.wikipedia.org/wiki/%E9%9B%86%E5%90%88%E6%97%8F
の「部分集合族」のところ読めって教えてあげたよね?
集合の内包的表記については
https://wiis.info/math/set/set/set/
の「集合と内包的表記」のところ読めって教えてあげたよね?
何で読まないの? なんでそんなに勉強嫌いなの?

>その説明責任は、この式を書いた者にあるよ
君が「1+1=2」って書いたら君はこの式がそもそも何者なのか説明するのかい? 書いた者に説明責任があるんでしょ? 同じことだよ

>例えば、有限の反復なのか無限なのか? あるいは、無限反復として最初の幾つかの項を明示的に書いたらどうなるのか?
愚門。
上記読め。
726
(8): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/06/28(土) 09:57:41.93 ID:Om34p0pv(1/2) AAS
>>723
>∩が使えないなんて言うバカ初めて見た

ふっふ、ほっほ
∩は、基本的に二項演算(binary operation)
で、いま集合族 Ai i∈{0,1,2,3,4,5}として

二項演算を、(下記)反復二項演算(Iterated binary operation)
に拡張したとき
∩i=1〜5 Ai

あるいは
∩i=0〜5 Ai
もあるよ

この両者は、意味が
違うよね

さらに変則で
∩i=2〜5 Ai
もある(これも 当然許される)

iの範囲を明示しない
∩ Ai
については、iの範囲を確認する必要があるのです
(反復二項演算で何をどれだけ反復するかは 一意ではないから)

さて、>>684 より ∩の反復二項演算として見た”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”って何だ?
これは、この式を書いた人に 説明責任があるよ 当然だが
まず、スタート(最初)の二項演算を書け
次に、Iteratedされるべき 続きの 数項を書け
そして、それが どこまで繰り返されるのかを書け?
それが明確にならない限り、上記の式意味は わからんぞw ;p)
繰り返すが、数学では この式を書いた人に 説明責任があるよ

(参考)(>>666より再録する)
https://en.wikipedia.org/wiki/Iterated_binary_operation
Iterated binary operation
(google 和訳)
反復二項演算
数学において、反復二項演算とは、集合S上の二項演算を、反復適用によってSの有限個の要素の列上の関数へと拡張したものである。 [ 1 ]一般的な例としては、加算演算を総和演算に拡張することや、乗算演算を積演算に拡張することがあげられる。集合論的な演算である和と積など、他の演算も反復されることが多い
Σ、Π、∪、∩
730: 132人目の素数さん [] 2025/06/28(土) 11:09:15.76 ID:QgVnvNrx(2/8) AAS
>>726
>さて、>>684 より ∩の反復二項演算として見た”∩{x⊂A|{}∈x∧∀y[y∈x→y∪{y}∈x]}”って何だ?
だから部分集合族の共通部分だと何度言わせるんだよ 日本語分からんの? 小学校からやり直し

>これは、この式を書いた人に 説明責任があるよ 当然だが
集合族の共通部分の定義通りだからこの式を書いた人に説明責任なんて無い アタオカか?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.655s*