[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
659
(2): 132人目の素数さん [] 2025/02/11(火) 14:28:47.62 ID:MW1+hP7T(21/61) AAS
ブルバキ数学原論を読む場合の注意

集合論
・集合論 1 第1章 形式的な数学の記述 は読まなくてもいい 
 論理について書いているがさすがに独特すぎるので
 集合論は 1および2を読めばよいかと

代数
・線形代数は
 基本     代数 2 第2章 線形代数
 行列式    代数 3 第3章 複線形代数
 固有値    代数 5 第7章 主環上の加群
 双線形形式  代数 7 第9章 準双線形形式と二次形式
・ガロア理論  代数 4 第5章 可換体

位相
・実数の定義は 位相 2 第4章 実数
 基本用語は  位相 1 第1章 位相構造 
             第2章 一様構造 
 にあるので飛ばさないこと
・複素数の定義 位相 3 第8章 複素数
・関数空間   位相 5 第10章 関数空間

実一変数関数
・導関数    実一変数関数 1 第1章 導関数
・積分     実一変数関数 1 第2章 原始関数と積分
・微分方程式  実一変数関数 2 第4章 微分方程式

積分
・ルベーグ測度 積分 1 第3章 局所コンパクト空間上の測度
660
(1): 132人目の素数さん [] 2025/02/11(火) 14:35:14.04 ID:MW1+hP7T(22/61) AAS
>>659
ここまで
多変数の微積分とか
ベクトル解析(微分形式・ストークスの定理)とか
複素解析とかは
まだ全然出てこない
(上二者は多様体 要約(証明なし)で出てくるが、複素解析は全く出てこない)
667
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 15:52:40.15 ID:zr+dFWV7(7/15) AAS
>>658-660
>なんなら、ブルバキ数学原論の・・

ハッキリ宣告しておくが、ブルバキ数学原論 は、全くお薦めじゃ無い!
下記の斎藤 毅氏 『EGA そのはじめのところをみると、数学の対象とは構造のついた集合であるという、ブルバキの数学観が、時代遅れになっていることがわかる』
とあるでしょ?w ;p)

さらに、”taro-nishinoの日記 ピエール・ドリーニュへのインタビュー”
にあるように、彼は 14才で ”ブルバキの集合論を与えたが、それは一少年に与える当然の選択でない。その時、私は14歳だった。その本を消化するのに少なくとも一年かかった”とある
まあ、それも彼は乗り越えて、しかし 高校時代にJacques Tits(アーベル賞受賞者)の講義を 聴講した。ドリーニュが、校外旅行で欠席したとき Jacques Titsは講義を延期した(ドリーニュへの配慮)

例外として、ブルバキ数学原論が好きな人がいることは認める
むかし、旧ガロアスレで、コテの”猫”さんと話をしたとき、彼は抽象的なテキストが好きで、図とか具体的な話は要らない みたいな意見だった

しかし、斎藤 毅『抽象数学では、記号はただの記号であることがだいじだが、ただの記号と思ってはいけないなどという話をする。矛盾しているようだが、いいたいのはこんなことである。ただの記号であるとは、どんなものでもあてはめてよいということである。そう思ってはいけないというのは、記号にあてはめられるものには、実に多様なものがあり、それらについての実体感抜きでは、本当の理解にはならないというつもりである』と
普通は、こっちでしょ?w ;p)

(参考)
https://www.ms.u-tokyo.ac.jp/~t-saito/jd.html
斎藤 毅
https://www.ms.u-tokyo.ac.jp/~t-saito/jd/gr.pdf
グロタンディーク 数学セミナー2010年5月号

グロタンディークほど、多くの伝説が語られた20 世紀の数学者はいないだろう。しかしここで書きたいのは、私にとってのグロタンディークである。それは、今では遠い学生のころ、来る日も来る日も読みふけった、Tohoku、EGA、SGAの著者である。 グロタンディークがこれらを書いたのは、1950年代末から60年代末にかけての10数年という、仕事の膨大さに比べれば、かなり短い時間である。グロタンディークは、1928年3月28日生まれなので、20 代後半から30代にかけての業績である

EGA
そのはじめのところをみると、数学の対象とは構造のついた集合であるという、ブルバキの数学観が、時代遅れになっていることがわかる。グロタンディークにとっては、数学の対象とは、表現可能な関手を表現する圏の対象である。 たとえば、ブルバキ流にいえば、実数体とは、実数全体の集合に、加法と乗法という代数的な演算を与え、さらに位相をいれたものである。EGA では、スキームXとYのS上のファイバー積とは、S上のスキームの圏の対象で、Xが表現する関手とYが表現する関手の積関手を表現するもの、というのが定義である。 数学の対象は、それが何からなりたっているかではなく、どういう役割を果たしているかが重要だ、という視点の転換がそこにある

SGA7
SGA の最終年(1967/69)となったものである。2冊目は、ドリーニュによるヴェイユ予想の解決の道具となった、消失輪体やレフシェッツ束の解析であるが、そこにはもうグロタンディークの姿はない
つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s