[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
313
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/06(木) 22:09:21.36 ID:6JYRwlF9(2/2) AAS
>>312
<公開処刑 続く>
(『 ZF上で実数は どこまで定義可能なのか?』に向けて と
  (あほ二人の”アナグマの姿焼き") に向けてww ;p) rio2016.5ch.net/test/read.cgi/math/1736907570/”]

>「任意の正方行列には逆行列がある」の1は

あほサルが、まだいうかw >>7-10

いま、英語圏では Invertible matrix だ(下記)
「Invertible matrix は、逆行列を持つ」 語感から言えば、同義反復だが 分かり易い ;p)
仏語も”Matrice inversible”だ(下記)

独語が、”Reguläre Matrix”
多分、和語は 戦前の独語の影響で、正則行列が専門用語だが、世界の趨勢に遅れているかもね ;p)

(参考)
en.wikipedia.org/wiki/Invertible_matrix
Invertible matrix
In linear algebra, an invertible matrix is a square matrix which has an inverse.

仏語
fr.wikipedia.org/wiki/Matrice_inversible
Matrice inversible
En mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité.

独語
de.wikipedia.org/wiki/Regul%C3%A4re_Matrix
Reguläre Matrix
Eine reguläre, invertierbare oder nichtsinguläre Matrix ist in der Mathematik eine quadratische Matrix, die eine Inverse besitzt. Reguläre Matrizen können auf mehrere äquivalente Weisen charakterisiert werden.
317: 132人目の素数さん [] 2025/02/06(木) 23:06:55.95 ID:SWnYLHJh(14/14) AAS
>>313
各国wikipediaを持ち出したところで君の持論
「任意の正方行列には逆行列がある」
はひとつも正当化されないんだが、頭だいじょうぶかい?
328
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/07(金) 10:43:50.72 ID:2sO/8ukw(1/6) AAS
>>313 補足
>「Invertible matrix は、逆行列を持つ」 語感から言えば、同義反復だが 分かり易い ;p)

これ 分かり易いが、すぐ ”逆行列を持たない行列とは?”が問題になる
それは、下記の通り零因子行列である (簡単に言えば、その行列式が0になる行列だ)
数学科修士卒を、標榜しながら これ(零因子)が分からないアホが、騒いでいた (^^
その顛末は、テンプレの>>8にまとめておいたw ;p)

(参考)
https://www.met-sp.jp/proof-that-a-nonregular-matrix-is-a-zero-or-a-zero-factor/
数理経済学的特別計画
数学
2023年11月24日
非正則な正方行列が零行列または零因子であることの証明
この記事では、非正則な正方行列が零行列または零因子であることを証明します。まず、いくつかの基本的な定義を整理し、その後で証明に進みます。
目次
非正則な正方行列が零行列または零因子であることの証明
証明
具体例
あわせて読みたい記事

http://izumi-math.jp/K_Oguri/insi/insi.htm
北 数 教
第42回 数学教育実践研究会
−教育現場のおける基礎研究−
行列における零因子の構造
平成14年8月3日(土)
北海道石狩南高等学校
数学科教諭 小栗 是徳

https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90
環の零因子(れいいんし、英: zero divisor)とは、環の乗法において、
 ”零以外の元と掛けたのに零となるような積が、少なくとも一つ存在する”
ような元のことである。 これは環の乗法における因子の特別な場合である。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.044s