[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
182(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:51:08.42 ID:Md2R2j9H(3/5) AAS
>>180
>>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.
>これ、選択公理を使うだろうと思って調べていた
>下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。)
>Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』
>ですね (^^
<補足>
1)Zorn補題は、選択公理と同値
2)Zorn補題(選択公理)で、通常のベクトル空間(基底の有限和)から
基底の無限個のベクトルの線形結合を使う ヒルベルト空間まで
その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる
3)『全然一意的ではないが』 by 山上滋先生 名大
存在のみのZorn補題(選択公理)で、言える
4)その存在定理の典型的な、使い方が>>110だね
同様に、例えば、ヒルベルト空間で ある特別な基底候補を使いたいとき
まず、上記 命題4.5 に照らしてみれば良い
そうすれば、その基底候補が、実際に基底として使えることが分る
フーリエ級数が、典型例>>160
"Zorn補題(選択公理)は、存在しか言えないから 具体的なこと言えない"と思った あなた それ勘違いですよ
存在の公理(定理)だから、適用範囲が広い
そして、ある空間の 基底の存在定理、次元定理から 具体的な 基底候補が、実際の基底として採用できることが分る
183: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:52:48.99 ID:Md2R2j9H(4/5) AAS
>>182 タイポ訂正
その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる
↓
その空間の基底の存在と、次元(ヒルベルト空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる
184: 132人目の素数さん [] 2025/02/05(水) 08:18:00.45 ID:5j19JkQh(1/2) AAS
>>182
> Zorn補題(選択公理)で、
> 線形空間の基底の存在と、
> 次元(基底の集合の濃度を意味する)が決められる
> 基底の存在定理の典型的な、使い方が>>110だね
>>111な 三ケタの数字を覚えられんのか? この昭和耄碌爺
で、>>112は解けたのか?
線形空間が有限次元なら、選択公理なんか使わんでも、
次元定理なんか直接証明できるぞ●●
大学1年の線型代数で習わんかったか?
ああ、論理がわからんので全く理解できんかったか?
計算方法覚えることしかできん●●公の工学部卒社奴
185(2): 132人目の素数さん [] 2025/02/05(水) 08:21:10.28 ID:5j19JkQh(2/2) AAS
>>182
> ある空間の 基底の存在定理、次元定理から
> 具体的な 基底候補が、実際の基底として採用できることが分る
じゃ、RをQ上の線形空間としてみたときの基底を、具体的に構成してみてくれる?
できるものならな
191: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 10:50:53.01 ID:hl9U/ln8(1/5) AAS
>>182 補足
・Hilbert spaceの Hilbert dimension は、下記
"As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94]"
(which may be a finite integer, or a countable or uncountable cardinal number).
・”The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space).”
”As a consequence of Parseval's identity,[95] 略 ”
・なお、>>146-147 "Proof that every vector space has a basis"では、有限和は 陽には使われていない
なので ”The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆.
Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V).
Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y.
As X is nonempty, and every totally ordered subset of (X, ⊆) has an upper bound in X, Zorn's lemma asserts that X has a maximal element. In other words, there exists some element Lmax of X satisfying the condition that whenever Lmax ⊆ L for some element L of X, then L = Lmax.”
とやっているので、⊆ による順序は Hilbert space でも そのまま使える
あとは、直交基底と 位相的な収束の話を 色付けすれば、よさそうだ
(参考)
https://en.wikipedia.org/wiki/Hilbert_space
Hilbert space
Hilbert dimension
As a consequence of Zorn's lemma, every Hilbert space admits an orthonormal basis; furthermore, any two orthonormal bases of the same space have the same cardinality, called the Hilbert dimension of the space.[94] For instance, since l^2(B) has an orthonormal basis indexed by B, its Hilbert dimension is the cardinality of B (which may be a finite integer, or a countable or uncountable cardinal number).
The Hilbert dimension is not greater than the Hamel dimension (the usual dimension of a vector space).
As a consequence of Parseval's identity,[95] if {ek}k ∈ B is an orthonormal basis of H, then the map Φ : H → l^2(B) defined by Φ(x) = ⟨x, ek⟩k∈B is an isometric isomorphism of Hilbert spaces: it is a bijective linear mapping such that
⟨Φ(x),Φ(y)⟩l^2(B)=⟨x,y⟩H
for all x, y ∈ H. The cardinal number of B is the Hilbert dimension of H. Thus every Hilbert space is isometrically isomorphic to a sequence space l^2(B) for some set B.
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s