[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
47: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 19:45:40.82 ID:5scbwZz/ >>41 (引用開始) >突っかかるやつへの対抗ですよw ;p) 君自身がコピペした内容理解してないから無意味 君、Jechの証明理解してないじゃん (引用終り) ふっふ、ほっほ 1)もし 引用部分が正しいとするね そうすると、私の書いていることは 基本は 引用部分のURLからの再引用(2度目の引用)であります ;p) あるいは、引用部分のURLからの必然の事項となっています 2)従って、理解している いない には 関係なく ツッコミどころは、ない!w (そこを たまに誤解して、”再引用(2度目の引用)”を 私個人の意見と誤解して ツッコミ入れる人居ますw。それ あなたですw) 3)Jechの証明、前スレより下記だね en.wikipedia の ”sup{α∣aα is defined}”が分らんと言っていた人 あなたでしょ?w 私も 誤解がありましたが、>>14の alg-d 壱大整域氏 の証明で、ようやく理解できました ご苦労さまですw ;p) 前スレ 808より (参考)(再掲) 631より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り) Thomas Jechの 証明 再録(前スレ 848より) P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■ (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/47
48: 132人目の素数さん [] 2025/02/02(日) 19:49:34.21 ID:7z4Dw9JT >>47 屁理屈はいいので早く>>17に答えて下さいね http://rio2016.5ch.net/test/read.cgi/math/1738367013/48
49: 132人目の素数さん [] 2025/02/02(日) 19:51:42.57 ID:7z4Dw9JT >>47 >私も 誤解がありましたが、>>14の alg-d 壱大整域氏 の証明で、ようやく理解できました いいえ、あなたは理解できてません。理解できてる人が >すきな順番に整列できる などという嘘デタラメ言いません。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/49
50: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/02(日) 19:58:40.30 ID:5scbwZz/ >>44 (引用開始) >3)つまり、あなたの選択関数と、私が(思う)選択する選択関数w > は、異なって良いのです!!ww ;p) だからと言って勝手な選択関数は作れない。 もし作れるならそもそも選択公理は不要。 だから >すきな順番に整列できる は嘘デタラメ。 (引用終り) ふっふ、ほっほ ・それ、自爆発言ですね ・自ら、>>47のJechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が ちゃんと 理解出来ていないと 自白しているに 等しい!w ・もし ちゃんと 理解出来ているならば 選択公理(選択関数)には 大きな自由度(任意度)があるのが分るはずです おサルさん>>7-10、 証明を読むときに 私が 心がけているのが 数学の証明は、その背後の数学的構造を反映する鏡であり 数学の証明を理解することは、背後の数学的構造を理解することだと そう思って証明を見ています あなたは、真に Jechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が ちゃんと 理解出来ては いない!!www ;p) http://rio2016.5ch.net/test/read.cgi/math/1738367013/50
57: 132人目の素数さん [] 2025/02/02(日) 22:29:41.72 ID:7z4Dw9JT >>50 >・それ、自爆発言ですね それが君 >・自ら、>>47のJechの証明 あるいは >>14の alg-d 壱大整域氏 の証明が > ちゃんと 理解出来ていないと 自白しているに 等しい!w それが君 >・もし ちゃんと 理解出来ているならば > 選択公理(選択関数)には 大きな自由度(任意度)があるのが分るはずです 選択公理とは「空でない集合の空でない族の直積は空でない」である。 つまり、直積の何らかの元が存在すると主張している。これは論理記号で書けば∃fであって∀fではない。 大きな任意度があーと言ってる君は∃と∀の区別が分かってないだけ。 そこが分からないから大学一年4月に落ちこぼれたんだよ。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/57
337: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/07(金) 15:47:44.72 ID:2sO/8ukw >>335-336 話は逆だろ? あほサル>>7-10のヤクザ因縁だろ?w ;p) 例えばテンプレ>>10がその典型で 列 {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・で Thomas Jechの 証明 >>47のように 順序数の付番をして 順序数との対と考えて ({},0)<({{}},1)<({{{}}},2)<({{{{}}}},3)<・・・ この順序は、順序数でつけられた順序 0 < 1 < 2 < 3 < ・・・ であると考える (>>47のThomas Jechの 証明の通りです ) だから、({},0) < ({{{}}},2) で、順序は 0 < 2 により従うとして問題なし! (^^ ところが、あほサルのヤクザは 『{{}}∈{{{}}} は真だが、{}∈{{{}}} は偽』>>9 などと、てめえの低能の脳内妄想全開の ヤクザ因縁w ;p) 完全にアホの”パープリン”(下記) 笑えます (^^ (参考) https://ja.wikipedia.org/wiki/%E6%9D%B1%E5%A4%A7%E4%B8%80%E7%9B%B4%E7%B7%9A 東大一直線 パープリン 「パーなのでまるで脳がプリン」を意味する。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/337
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s