[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ13 http://rio2016.5ch.net/test/read.cgi/math/1738367013/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
427: 132人目の素数さん [] 2025/02/09(日) 12:40:54.88 ID:erxXzwp/ >>422 どうせおサルさんは逃げるので代わりに答えてあげよう。 {・・{{{}}}・・}_ωが集合であると仮定すると、その元は一番外側の括弧を外したもの。 しかしωは後続順序数ではないのでその前者は存在しない。よって一番外側の括弧を外すことができない。 集合なのに一番外側の括弧を外すことができないのは矛盾だから、集合であるとした仮定が誤り。 つまり >しかし だから、lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ! は、ある不明なものを別の不明なもので定義しただけであり、結局何の定義にもなっていない。 http://rio2016.5ch.net/test/read.cgi/math/1738367013/427
434: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/09(日) 20:08:08.05 ID:lz6oAIdr >>427 (引用開始) {・・{{{}}}・・}_ωが集合であると仮定すると、その元は一番外側の括弧を外したもの。 しかしωは後続順序数ではないのでその前者は存在しない。よって一番外側の括弧を外すことができない。 集合なのに一番外側の括弧を外すことができないのは矛盾だから、集合であるとした仮定が誤り。 つまり >しかし だから、lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ! は、ある不明なものを別の不明なもので定義しただけであり、結局何の定義にもなっていない。 (引用終り) 良いんじゃね? それで ・ZFC で、ゲーデルの不完全性定理の示すところ、ZFCで否定も肯定もできない命題が存在するよね だから、”lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ!”はあり(ZFCの外の存在としてでも) ・そもそもが、無限公理についても デデキントは ”無限集合の存在”が 証明できると考えていたのです(下記 渕野) ・しかし、”無限集合の存在”は、他の公理から証明することができないとなって ”無限集合の存在”の公理を置いた(いわゆる無限公理) ・「無限とはなんぞや?」 だが、”無限”を言葉で書くとまずい 言葉で書くと、その書いたことばをまた定義しなければならない・・と 無限に後退してしまう だから、”無限集合”を公理としておいた ・だったら、それに準じて 必要ならば ”lim n → ω ω := {・・{{{}}}・・}_ω と定義してしまえ!”は、ありだろ? それが、従来の集合と異なる? それがどうした? 無限公理の示す 無限集合は それ以前の有限集合と異なる性質を持つよw ;p) (参考) https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1739-16.pdf 数理解析研究所講究録 2011年 Dedekindの数学の基礎付けと集合論の公理化 渕野昌 神戸大学 P173 3 無限の存在証明 晩年のDedekind が,無限の存在証明 ([3] の66.)の残ったままのテキストをこの再版に回してしまったことの背景だったのではないだろうか. ただし,Dedekindの名誉のために付け加えておくと,1911年の時点では,無限の存在が集合論の他の公理から独立であることは,当時の若い集合論の研究者たちすら,まだ完全には把握しきれていなかった可能性がある.たとえば,Zermelo文[18]の公理系とよばれることになる体系の原形はで発表されているが,その初めで,Zermelo Zermeloは, 略す と書いているし,Zermelo [18],下線の公理の命題の間の独立性についての,より踏み込んだ議論は,Fraenkelらである.無限公理の1922年の論文[7]までなされていないように思えるか(無限集合の存在を主張する公理)性はの集合論の他の公理からの独立(集合論のすべての公理を含む体系の中で), Hω (hereditarily f initeな集合の全体)と,この上に$\in$関係を制限したものの組からなる構造を作ると,そこでは,無限公理以外の集合論のすべてが成り立つことが確かめられ,そのことから「集合論の公理系が無矛盾なら,集合論の公理系から無限公理を除いた体系から無限公理は導かれない」ことが導かれるとして示すことができる.もちろん,[集合論の公理系が無矛盾なら」は,不完全性定理以降の時代に生きる我々の後知恵であるが(9), 略す (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1738367013/434
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s