[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
79(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 11:25:44.20 ID:Kqr4zqHs(1/4) AAS
>>64-65
ID:bvvTKD+8 は、御大か
巡回ご苦労様です
なるほど
ご指摘の思い当たる点を 自分で赤ペンすると
(引用開始)
>>15で示した 例示 ミニモデルで 集合X={a,b,c,d} で
冪集合 P(X)={ {a,b,c,d},
{a,b,c},{a,b,d},{a,c,d},{b,c,d}
{a,b},{a,c},{b,c}, {a,b},{a,d},{b,d}, {a,c},{a,d},{c,d}, {b,c},{b,d},{c,d},
{a},{b},{c,},{d},
∅ }
これで 包含関係 で 順序が入る
{a,b,c,d}⊃{a,b,d}⊃{a,b}⊃{a}⊃∅
で、整列順序の極大元になる
この前後の差分 c>d>b>a Xので整列になる
この極大は、幾通りもある(どれを選ぶも任意!!です)
(引用終り)
1)ここの素朴(ナイーヴ)な議論が、まずいってことですね
2)つまり、無限集合では
ヒルベルトホテルのパラドックスが起きる ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
例えば、順序数ω から 一つ減らしても ωのままです (順序数の演算ご参照 ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 )
3)この素朴な議論を、ZFC内で 正当化したのが >>14の alg-d 壱大整域氏 の証明で
そこで 必要なのが 1)選択公理(及びそれと同値のZorn補題) 2)順序数 との対応付け
ということですね
これによって 当初の素朴(ナイーヴ)な議論のスジが、ほぼZFC内の議論に変換できている
4)ここで、注目すべきは 冪集合 P(X)には、⊃ による 順序構造とか
X={a,b,c,d}を頂点にして 最底辺が 空集合∅ という 階層構造とかがある (一方 X自身には そういう構造の仮定はない)
ここらを潜在的な構造として うまく ZFC内で 正当化しているのが、 >>14の alg-d 壱大整域氏 の証明です
なお >>37の ツォルン(Zorn)の補題 → ツェルメロ(Zermelo)の整列定理の証明 も 同様です
83(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 11:55:07.56 ID:Kqr4zqHs(2/4) AAS
>>78 補足
下記は、見ておくのがよさそう
(参考)(”Hausdorff's Maximal chain Condition”と”Tukeyの補題”は、有名なので 知っておくべきでしょう)
https://alg-d.com/math/ac/
alg-d 壱大整域
https://alg-d.com/math/ac/zorn.html
Zornの補題・極大原理 2015年12月20日
定理1 次の命題は(ZF上)同値.
1.順序集合Xが「Xの鎖には上界が存在する」を満たすならば,Xの極大元が存在する.(Zornの補題)
6.有限性をもつ非空集合Xは(⊂に関する)極大元をもつ.(Tukeyの補題)
8.任意の順序集合(X, ≦)は極大鎖を持つ.(Hausdorff's Maximal chain Condition)
証明
略す
87(2): 132人目の素数さん [] 2025/02/03(月) 14:48:21.68 ID:Kqr4zqHs(3/4) AAS
>>80
原理はその通り
>>14の alg-d 壱大整域氏 の証明は
それを ZFCのルール中で 構成している
93(2): 132人目の素数さん [] 2025/02/03(月) 17:57:18.63 ID:Kqr4zqHs(4/4) AAS
>>80 補足
(引用開始)
選択関数fが
f({a,b,c,d})=c
f({a,b,d})=d
f({a,b})=b
f({a})=a
なら、整列はc<d<b<a となる
で、他のP(X)-{φ}でのfの値をどう設定しても整列に影響しないが、もし
f({a,b,c,d})=a
とすると、今度はf({b,c,d})の値が必要となる さらに
f({b,c,d})=b
とすると、f({c,d})の値が必要となり、
f({c,d})=c
とすると、f({d})=dだから、整列はa<b<c<dとなる
要するにそういうこと これは別にXが無限でも同じ
(引用終り)
それでいいんだよ
そして、いま
集合Xに対する 選択関数fは
可算無限 X={x0,x1,x2,・・} ならば、f(X)=xi | i∈N
(xiは、可算無限集合Xから一つ選ばれる)
連続無限 X={xt |tは実数で t∈[0,∞]} ならば、f(X)=xt | t∈R
(xtは、連続無限集合Xから一つ選ばれる)
となる
そして、なにをどう選ぶか?
そのとき、その人次第なのです
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s