[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
99: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 20:51:05.51 ID:KN6t4rnq(1/3) AAS
>>83 追加
下記も知っておく方が良い
特に
1.任意の集合は整列可能.
↓
2.任意の全順序集合は整列可能.
↓
3.集合 X が整列可能ならば冪集合 P(X) も整列可能.
これ、Jechの証明は、冪集合 P(X)を利用して 集合 Xの整列可能をしている
一見その逆の主張だね、面白い ;p)
(参考)
alg-d.com/math/ac/wot.html
alg-d 壱大整域
選択公理 > 整列可能定理について
2012年08月05日
定理4 次の命題は同値
1.任意の集合は整列可能.
2.任意の全順序集合は整列可能.
3.集合 X が整列可能ならば冪集合 P(X) も整列可能.
4.順序数αに対して P(α) も整列可能.
証明 (1⇒2) 自明
(2⇒3) (X, ≦)を整列順序集合とする. P(X) に二項関係 < を
A<B ⇔ ある a∈A\B が存在して任意の b∈B\A に対して a<b
で定める.これによって P(α) が全順序集合になることを確かめる.
(i) ¬A<A について.
A\A= ∅ なので明らか
(ii) A<B ⇒ ¬B<A について.
A<Bとすると < の定義より,あるa0∈A\Bが存在して「任意の b∈B\A に対して a0<b 」となる.よって明らかに ¬B<A である.
(iii) A<B または A=B または B<A について.
A≠B とすると,X は整列順序集合だから a := min( (A\B)∪(B\A) ) が存在する.勿論 a∈A または a∈B であるが,明らかに a∈A ならば A < Bで,a∈B ならば B < A である.
(iv) (A<B かつ B<C) ⇒ A<C について.
¬A<C と仮定する.A=C だとすると A<BかつB<A となり(ii)に反するので A≠B である.故に(iii)から C<A である.A<B, B<C, C<A より
(1) 任意の b∈B\A に対して a0 < b
(2) 任意の c∈C\B に対して b0 < c
(3) 任意の a∈A\C に対して c0 < a
を満たすa0∈A\B, b0∈B\C, c0∈C\Aが存在する.a0∈A\Cである.
∵ a0 ∉ A\C と仮定する.即ちa0∈Ac∪Cである.a0∈A\Bだったから a0 ∈ (Ac∪C)∪(A\B) = A∪C\B ⊂ C\B である.よって(2)により b0 < a0.従って(1)から b0 ∉ B\A でなければならない.すると同様の議論を繰り返して a0 < c0 < b0 < a0 が導かれ,矛盾.
同様にしてb0∈B\A, c0∈C\Bである.従って(1)(2)(3)から a0 < b0 < c0 < a0 となり,矛盾する.
以上より(P(X), <)は全順序集合である.よって,仮定より整列可能である.
(3⇒4) 明らか.
以下略す
104(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 21:38:35.02 ID:KN6t4rnq(2/3) AAS
>>95-97
(引用開始)
>そして、なにをどう選ぶか?
>そのとき、その人次第なのです
選択公理を仮定しても選択関数が存在することしか言えないのに何をどう選ぶと?
君、選択公理すら分かってないんだね なんでそんなに馬鹿自慢したいの?
選択公理は自由に選択できる公理とでも?
数学は連想ゲームじゃないよ
わからない by ID:HcxbjtX3
(引用終り)
ID:HcxbjtX3は、御大か
巡回ご苦労さまです
さすがですね
というか、当然ですが
数学で、存在定理(または公理。以下 定理のみで略記する)とは 存在を保証する定理ですが
そこに、人の意志が入る場合と 入らない場合と 両方が可能なのです(当たり前ですが、存在定理は人の意志を拒否しない)
あるいは、特別な場合に 具体的な構成を示すとか
それは、数学のレベルが上がれば分ること
しかし、大学学部1年か2年で詰んで、レベルの高い数学を知らない人には、それが分らないのですね
en.wikipedia.org/wiki/Existence_theorem
Existence theorem
ja.wikipedia.org/wiki/%E5%AD%98%E5%9C%A8%E5%AE%9A%E7%90%86
存在定理
何らかの数学的対象の存在をいう定理の総称。定理の内容や証明において、対象の具体的な構成方法は必ずしも示されない。
ja.wikipedia.org/w/index.php?search=intitle%3A%E5%AD%98%E5%9C%A8%E5%AE%9A%E7%90%86&title=%E7%89%B9%E5%88%A5:%E6%A4%9C%E7%B4%A2&ns0=1
タイトルに「存在定理」を含むページの一覧
高木の存在定理
カラテオドリの存在定理
109: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/03(月) 23:44:33.04 ID:KN6t4rnq(3/3) AAS
>>102
ふっふ、ほっほ
天下の落書き 便所板
君みたいな人がいてね
で、「君はどんな立派なことを書いたの? 学位持ってる? 論文書いて雑誌に載った? 出版した本は?」
と聞いたら、裸足で逃げたな
この中で、自分の理論作って、論文書いた人は? 一人だけか
この中で、自分の理論で、本を書いた人は? 一人だけか
だったらさ、あなた方が タネ本隠して書くことはさ
みんなタネ本があって、そういうところからの 受け売りじゃん!!www ;p)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s