[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
116
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 10:56:52.68 ID:+HgMDnV2(1/11) AAS
>>111 補足

これ、典型的な存在定理(公理)の使い方
具体的な R2の線形空間の 二つのベクトル (1,1), (−1,2) が、基底になっている

言い換えると、 (1,1), (−1,2) を、基底に取れる
証明を見ると、背後の数学の構造が分かる

証明から、基底の二つのベクトル が、かなり自由に選択できることが分かる
典型例は、 (1,0), (0,1) だが、これが 一例にすぎないことも分かる

選択公理は、選択関数の存在しか言わないが、選択が具体的であることを妨げない
(1,1), (−1,2) を選択しようが、 (1,2), (−3,2) を選択しようが、 (1,0), (0,1) を選択しようが、かまわない

また、ある具体的な対象に対して、存在定理(公理)を適用して 分かること(主張できること)があるんだね
これ、典型的な存在定理(公理)の使い方
141
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:04:09.21 ID:+HgMDnV2(2/11) AAS
皆さま お楽しみ中、お邪魔です ;p)

>>118
>◆yH25M02vWFhPは、次元定理の「背後の数学の構造」が全く分かってない
>だから>>115みたいなことを平気で言う
>次元定理のステートメント、確認してみ?
>おまえが想像してるものと全然違うから
>https://ja.wikipedia.org/wiki/%E9%9A%8E%E6%95%B0%E3%83%BB%E9%80%80%E5%8C%96%E6%AC%A1%E6%95%B0%E3%81%AE%E5%AE%9A%E7%90%86

えーと、おサルさん>>7-10
いきなり 難しい定理のサイトに飛んで 消化不良ですよ
まず 順番として 下記 高校数学の美しい物語 次元定理の意味,具体例,証明
さらに 数学の風景 線形写像の次元定理dim V = rank f + dim ker fの証明
を見なさい。後者は、図解が美しいよ。

その上で 英 wikipedia
”等しい有限次元のベクトル空間の線型変換の場合、単射性または全射性のいずれかが全単射性を意味することになります。
(原文 It follows that for linear transformations of vector spaces of equal finite dimension, either injectivity or surjectivity implies bijectivity.)”
が、キモです。百回音読しましょうねw ;p)

(参考)
https://manabitimes.jp/math/1077
高校数学の美しい物語
次元定理の意味,具体例,証明 2021/03/07
行列における次元定理
A を m×n 実行列とするとき,
rankA+dim(KerA)=n
目次
次元定理について
具体例
次元定理のイメージ
次元定理の証明
次元定理について
rankA は
A のランク(階数)です。→行列のランクの意味(8通りの同値な定義)
dim は次元,
KerA は
A のカーネル(核)です。→行列のカーネル(核)の性質と求め方

「ランク,次元,カーネルってなんだ,全部初耳だよ」って方は,以下の具体例とイメージを見てなんとなく雰囲気をつかんでください。
次元定理は行列に対してではなく一般の線形写像について述べられることも多いです。ただし意味はほとんど同じなので,行列の場合できちんと理解しておけばOKです。
Wikipediaでは「階数・退化次数の定理」と呼ばれています。

次元定理の証明(分かり易い 原文参照請う)
略す

https://mathlandscape.com/rank-ker-dim/
数学の風景
線形写像の次元定理dim V = rank f + dim ker fの証明 2023.05.10

証明
Imf,Kerf はベクトル空間であったことに注意(→ 線形写像の像(Im),核(Ker)の定義とそれが部分空間になる証明)。

V の基底になっていることを示すには,
それらが一次独立であること
任意の v∈V がそれらの一次結合でかけること
を示せばよい。順番に示していこう。
略す

つづく
142: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:04:36.10 ID:+HgMDnV2(3/11) AAS
つづき

英 wikipedia
https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem
Rank–nullity theorem
(google訳)
ランク-ヌル定理(階数零定理)
階数零定理は線型代数学の定理であり、次のことを主張します。
略す
したがって、等しい有限次元のベクトル空間の線型変換の場合、単射性または全射性のいずれかが全単射性を意味することになります。
(原文 It follows that for linear transformations of vector spaces of equal finite dimension, either injectivity or surjectivity implies bijectivity.)

再定式化と一般化
この定理は、ベクトル空間の場合の代数学の第一同型定理の記述であり、分割補題に一般化されます。

より現代的な言葉で言えば、この定理はベクトル空間の短完全列はそれぞれ分割される、と表現することもできる。
略す

A third fundamental subspace
When T:V→W is a linear transformation between two finite-dimensional subspaces, with
n=dim(V) and m=dim (W) (so can be represented by an m×n matrix M),
the rank–nullity theorem asserts that if T has rank r, then n−r is the dimension of the null space of M, which represents the kernel of T.
In some texts, a third fundamental subspace associated to T is considered alongside its image and kernel: the cokernel of T is the quotient space
W/Im(T), and its dimension is m−r.
This dimension formula (which might also be rendered
dim Im(T)+dimCoker(T)=dim(W)
together with the rank–nullity theorem is sometimes called the fundamental theorem of linear algebra.[7][8]

再定式化と一般化
この定理は、ベクトル空間の場合の代数学の第一同型定理の記述であり、分割補題に一般化されます。
より現代的な言葉で言えば、この定理はベクトル空間の短完全列はそれぞれ分割される、と表現することもできる。
0→U→V→R→0
はベクトル空間の短完全列 であるので、
U⊕R≅Vしたがって
dim(U)+ dim(R)=dim(V).
略す
We see that we can easily read off the index of the linear map
T from the involved spaces, without any need to analyze
T in detail. This effect also occurs in a much deeper result: the Atiyah–Singer index theorem states that the index of certain differential operators can be read off the geometry of the involved spaces.

つづく
143: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:04:55.51 ID:+HgMDnV2(4/11) AAS
つづき

ついでに
独 wikipedia
https://de.wikipedia.org/wiki/Rangsatz
Rangsatz
Der Rangsatz oder Dimensionssatz ist ein Satz aus dem mathematischen Teilgebiet der linearen Algebra. Er zeigt einen Zusammenhang zwischen den Dimensionen der Definitionsmenge, des Kerns und des Bildes einer linearen Abbildung zwischen zwei Vektorräumen auf.
(google 英訳)
Table of contents
1 Sentence
2 Proofs
2.1 Proof of the Homomorphism Theorem
2.2 proof by basis completion
3 reversal
4 generalization

仏 wikipedia
https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_du_rang
Théorème du rang
(google 英訳)
Rank theorem
In mathematics , and more precisely in linear algebra , the rank theorem links the rank of a linear application and the dimension of its kernel . It is a corollary of an isomorphism theorem . It can be interpreted by the notion of linear application index .
In finite dimension, it allows in particular to characterize the invertibility of a linear application or of a matrix by its rank.
(引用終り)
以上
146
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:33:49.38 ID:+HgMDnV2(5/11) AAS
>>131
(引用開始)
>>129の「」には反例がある
つまり、線形空間の次元が無限濃度の場合
単に同じ濃度の線形独立なベクトルが張る空間が
元の空間より真に小さい場合があり得る
だから次元定理はもっと精密な言い方をしてるが
◆yH25M02vWFhPは勝手に粗視化してる
有限次元でOKだから無限次元でもそうなる、
と考えるのはあさはか
(引用終り)

なるほど >>111 の ja.wikipedia 基底 (線型代数学) で
en.wikipedia で 該当の Basis (linear algebra) では
”This article deals mainly with finite-dimensional vector spaces. ”の一言があるね (ja.wikipediaの記述が滑っているか) ;p)

ついでに、”Proof that every vector space has a basis”貼るよ
”This proof relies on Zorn's lemma, which is equivalent to the axiom of choice. Conversely, it has been proved that if every vector space has a basis, then the axiom of choice is true.[9]”

(参考)
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
Basis (linear algebra)
This article deals mainly with finite-dimensional vector spaces.
However, many of the principles are also valid for infinite-dimensional vector spaces.
Basis vectors find applications in the study of crystal structures and frames of reference.

つづく
147
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:34:09.89 ID:+HgMDnV2(6/11) AAS
つづき

Proof that every vector space has a basis
Let V be any vector space over some field F. Let X be the set of all linearly independent subsets of V.

The set X is nonempty since the empty set is an independent subset of V, and it is partially ordered by inclusion, which is denoted, as usual, by ⊆.

Let Y be a subset of X that is totally ordered by ⊆, and let LY be the union of all the elements of Y (which are themselves certain subsets of V).

Since (Y, ⊆) is totally ordered, every finite subset of LY is a subset of an element of Y, which is a linearly independent subset of V, and hence LY is linearly independent. Thus LY is an element of X. Therefore, LY is an upper bound for Y in (X, ⊆): it is an element of X, that contains every element of Y.

As X is nonempty, and every totally ordered subset of (X, ⊆) has an upper bound in X, Zorn's lemma asserts that X has a maximal element. In other words, there exists some element Lmax of X satisfying the condition that whenever Lmax ⊆ L for some element L of X, then L = Lmax.

It remains to prove that Lmax is a basis of V. Since Lmax belongs to X, we already know that Lmax is a linearly independent subset of V.

If there were some vector w of V that is not in the span of Lmax, then w would not be an element of Lmax either. Let Lw = Lmax ∪ {w}. This set is an element of X, that is, it is a linearly independent subset of V (because w is not in the span of Lmax, and Lmax is independent). As Lmax ⊆ Lw, and Lmax ≠ Lw (because Lw contains the vector w that is not contained in Lmax), this contradicts the maximality of Lmax. Thus this shows that Lmax spans V.

Hence Lmax is linearly independent and spans V. It is thus a basis of V, and this proves that every vector space has a basis.

This proof relies on Zorn's lemma, which is equivalent to the axiom of choice. Conversely, it has been proved that if every vector space has a basis, then the axiom of choice is true.[9] Thus the two assertions are equivalent.
(引用終り)
以上
151
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 16:58:55.57 ID:+HgMDnV2(7/11) AAS
>>137-140
>>選択関数を好きに構成できると?
> 「構成」はできない
> ただ、考えられる選択関数は無数にある

ありがとうございます。

1)そもそも、公理とは 条件さえ許せば 無制限に適用できる
 存在定理(公理)とは、ある条件の数学対象が存在することを主張する
 その数学対象は、存在定理の場合には、具体的な構成が与えられていない
 が、具体的な構成が与えられる場合を含んでよい(そうしなければ、構成の有無で 場合分けが必要なるw)
 有限集合と、無限集合の区別も同様で、選択公理は無限集合限定という制約はない(勝手に無限集合限定の制約があると思い込む人あり)
 存在は、一つに限らない。当然 一つの場合もあるだろうが、限られない
(例えば、単元集合 {xi} i∈λ の選択関数は一意だが、二元集合 {xi,xj} i,j∈λに対する 選択関数は一意ではなくなる)
2)こういう、当たり前の理解が すべって 錯乱している人がいる気がする
159: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 17:48:23.66 ID:+HgMDnV2(8/11) AAS
>>148-150
>線形空間の基底と、線型位相空間の基底は、異なる
>前者は有限和しか考えないが、後者は無限和を考える
>線形「位相」空間という所以である

下記だね
ja.wikipedia 基底 (線型代数学) 及び 河東泰之, 線形代数と関数解析学
『かわりに有用なのは,任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.』
だね

(参考)
https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%AD%A6)
基底 (線型代数学)
関連概念
解析学
そのような基底の概念で極めて重要なものとしては、ヒルベルト空間上の正規直交基底やノルム線型空間上のシャウダー基底(英語版)およびマルクシェヴィチ基底(英語版)が挙げられる。

これらの基底概念に共通する特徴は、全体空間を生成するのに基底ベクトルの無限線型結合までを許すことである。
これにはもちろん、無限和が意味を持つような空間(位相線型空間)を考えることが必要である。
位相線型空間は非常に広範なベクトル空間のクラスであり、例えばヒルベルト空間やバナッハ空間あるいはフレシェ空間といったものを含む。

無限次元空間に対してこれら異種の基底が優先されるのは、バナッハ空間においてはハメル基底は「大きすぎる」という事実によるものである。即ち、X が完備な無限次元ノルム空間(つまりバナッハ空間)のとき、X の任意のハメル基底が非可算となることがベールの範疇定理から従う。先の主張における完備性の仮定は無限次元の仮定同様に重要である。


フーリエ級数論において、函数系 {1} ∪ {sin(nx), cos(nx) : n = 1, 2, 3, …} が、区間 [0, 2π] 上の実(または複素)数値自乗可積分函数、即ち
略す
を満たす函数全体の成す実(または複素)線型空間の「正規直交基底」となることを知るはずである。

つづく
160
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 17:48:44.94 ID:+HgMDnV2(9/11) AAS
つづき

https://www.ms.u-tokyo.ac.jp/~yasuyuki/
河東泰之(かわひがしやすゆき) (Google Scholar Page)
https://www.ms.u-tokyo.ac.jp/~yasuyuki/surikagaku.htm
河東泰之の「数理科学」古い記事リスト
https://www.ms.u-tokyo.ac.jp/~yasuyuki/suri0806.pdf
6.河東泰之, 線形代数と関数解析学,「数理科学」 Vol.46-6, pp.39-43, サイエンス社,2008

1. はじめに
線形代数は線形空間とその上の線形作用素を取り扱う.
ごく基礎的な部分は線形空間が有限次元でも無限次元でも違いはないが,線形代数の中心的な話題,すなわち対角化,ジョルダン標準形,ランクの話などは,線形空間が有限次元でないと話がうまく進まない.
そもそも行列を具体的に書く話が線形代数の中心であり,無限サイズの行列は最初から話に入っていない.
この意味で通常の線形代数は有限次元の理論であると言ってもさしつかえない.
これを無限次元で考察するのが関数解析学である.
しかし,単に無限次元の線形空間やその上の線形作用素を考えたのでは,手がかりが少なすぎて,意味のある一般論はほとんど何も展開できない.
そこで新たな手法が必要になる.それが収束の概念である.
これを導入し,位相的な考察を加えた無限次元の線形代数が関数解析学である.
そもそもなぜ「関数」解析というのだろうか.それはさまざまな関数のなす無限次元空間が基本的な対象だからである.
関数解析学成立の重要な動機を与えたのは,微分(あるいは積分)方程式と量子力学である.
これら二つについては本号の特集でそれぞれ別に記事があるのでここでは詳しいことは書かないが,
前者については関数が出てくるのは当然であり,後者についてもさまざまな関数が物理的状態を表すものとして現れることに注意しておこう.
以下,線形代数が無限次元でどのような形を取るのか見ていくことにする.

2. ヒルベルト空間とバナッハ空間
まず線形作用素の前に線形空間がなければ話が始まらない.通常の線形代数では,基底の話は重要であるが,それ以外にはあまり中身のある話はない.たとえば線形空間の公理自体にたいして中身があるわけではない.通常の微分積分学では,数列の収束が基本的な概念である.

線形空間としての基底,すなわち任意のベクトルを有限個の基底ベクトルの線形結合で表せるものはいつでも存在するが,無限次元線形空間でそのようなものを考えてもほとんど役に立たない.
かわりに有用なのは,任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.
これに対し,一般のバナッハ空間の設定では基底の一般論はやっかいであり,あまりはっきりした結果は得られない.
ノルムがうまく定められないが自然に位相の入る線形空間もあり,さまざまなクラスが研究されているが簡単のためここでは省略する.
以下略
(引用終り)
以上
163
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 18:03:46.42 ID:+HgMDnV2(10/11) AAS
>>156-158
選択公理および選択関数について
トンチンカンな発言をしている人がいた
だから、当たり前のことを、強調しただけですよ (^^

>だから命題ごとに個別に規定要(理論ごと規定する場合は「以下、断り無き場合〇〇公理を前提とする」などと表記)

大体は、ほぼ ZFCベース
だから、特に断りがない場合は、ZFCベースがデフォ(デフォルト)ですよ

たまに、「この証明には、選択公理が必要」とか、後出しで 注意を書く場合あり (^^
167
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 18:21:51.18 ID:+HgMDnV2(11/11) AAS
>>100-101
>治らないコピペ癖 ID:oyw47Vnz
>ほっとけ ID:pX4W9Cg1

ID:pX4W9Cg1は、御大ね
ID:oyw47Vnzは、おサル>>7-10 かな?

1)院試合格までは、数学の実力は主に試験で測られる
 限られた場所で、カンニング無しで、限られた時間内で どれだけ解けるか
2)しかし、院試合格の後の 数学の実力は なんでもあり
 カンニングありで、誰に相談しても 聞いても良い
 時間制約は、あっても年単位
3)社会人でも、上記2)と似たようなもの
 特に、”カンニングありで、誰に相談しても 聞いても良い”

さて、ここ 天下の落書き 便所板で
多くの人が タネ本があるのに それを隠して
あたかも 自分が 考えたように 書いている 院試の答案のように
で、しばしば エラーが混じる 赤ペンが必要だ

自分が、そのようにして 赤ペンが必要な エラー混じりのカキコをして
しかし、タネ本を隠して 自分の実力のように見せて ハナタカしている

だが、ハナタカできるのは 独自の数学理論を創出して
論文書いて、教科書(テキスト)を書いて、大学で講義したり
そういう人だけでしょ?

なんか、タネ本でカンニングしているのに
そこを偽装して、ハナタカしている
それって、見え見え。たいがい 底が見えていますww ;p)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s