[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
45: 132人目の素数さん [] 2025/02/02(日) 19:39:41.42 ID:7z4Dw9JT(11/18) AAS
無限個のうちの有限個は好きな順番にできるとか屁理屈捏ねるのが猿知恵の限界
150(1): 132人目の素数さん [] 2025/02/04(火) 16:57:44.42 ID:qp4hVvDG(1) AAS
線形空間の基底と、線型位相空間の基底は、異なる
前者は有限和しか考えないが、後者は無限和を考える
線形「位相」空間という所以である
163(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/04(火) 18:03:46.42 ID:+HgMDnV2(10/11) AAS
>>156-158
選択公理および選択関数について
トンチンカンな発言をしている人がいた
だから、当たり前のことを、強調しただけですよ (^^
>だから命題ごとに個別に規定要(理論ごと規定する場合は「以下、断り無き場合〇〇公理を前提とする」などと表記)
大体は、ほぼ ZFCベース
だから、特に断りがない場合は、ZFCベースがデフォ(デフォルト)ですよ
たまに、「この証明には、選択公理が必要」とか、後出しで 注意を書く場合あり (^^
182(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/05(水) 07:51:08.42 ID:Md2R2j9H(3/5) AAS
>>180
>>任意のベクトルを無限個のベクトルの線形結合で表すことである.ヒルベルト空間では,これを実現する正規直交基底を取ることがいつでもでき,有限次元空間とよく似た話が無限次元でも展開できる.フーリエ級数はその具体例として大変重要なものである.
>これ、選択公理を使うだろうと思って調べていた
>下記 山上滋先生 名大 関数解析入門 『命題4.5.ヒルベルト空間の正規直交基底は必ず存在する。(全然一意的ではないが。)
>Proof.基本的なアイデアはの直交化であるが、正式にはのZorn補題を使う。各自、確かめよ』
>ですね (^^
<補足>
1)Zorn補題は、選択公理と同値
2)Zorn補題(選択公理)で、通常のベクトル空間(基底の有限和)から
基底の無限個のベクトルの線形結合を使う ヒルベルト空間まで
その空間の基底の存在と、次元(ベクトル空間の場合 基底の集合の濃度を意味する。可算にする場合が多いらしい)が決められる
3)『全然一意的ではないが』 by 山上滋先生 名大
存在のみのZorn補題(選択公理)で、言える
4)その存在定理の典型的な、使い方が>>110だね
同様に、例えば、ヒルベルト空間で ある特別な基底候補を使いたいとき
まず、上記 命題4.5 に照らしてみれば良い
そうすれば、その基底候補が、実際に基底として使えることが分る
フーリエ級数が、典型例>>160
"Zorn補題(選択公理)は、存在しか言えないから 具体的なこと言えない"と思った あなた それ勘違いですよ
存在の公理(定理)だから、適用範囲が広い
そして、ある空間の 基底の存在定理、次元定理から 具体的な 基底候補が、実際の基底として採用できることが分る
249: 132人目の素数さん [] 2025/02/06(木) 09:06:01.42 ID:TvbkU+uU(1) AAS
何についての話なのかが分からない
256(1): 132人目の素数さん [] 2025/02/06(木) 09:29:15.42 ID:QnD62ATK(1) AAS
>>255 どこに書いたか番号示してくれる?
392(1): 132人目の素数さん [] 2025/02/09(日) 06:34:12.42 ID:bOyjY4Ig(1/9) AAS
>10の有限小数は環をなさねえよ!
わからない
むずかしい
616: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/11(火) 00:35:55.42 ID:zr+dFWV7(2/15) AAS
>>615
>主に河田敬義「ガウスの楕円関数論」上智大学数学講究録 24 を参考にして
下記ですね(最下段のPDF)
この河田先生PDFで、基本領域図は P160、161 にまたがる部分ですね
河田先生の解説がありますね。なるほどね
(参考)
https://cir.nii.ac.jp/all?q=%E4%B8%8A%E6%99%BA%E5%A4%A7%E5%AD%A6%E6%95%B0%E5%AD%A6%E8%AC%9B%E7%A9%B6%E9%8C%B2&page=2
上智大学数学講究録
https://cir.nii.ac.jp/crid/1050010457800324096
ガウスの楕円関数論(高木貞治先生著"近世数学史談"より)
機関リポジトリ
https://digital-archives.sophia.ac.jp/repository/view/repository/20220411006
メタデータ ファイル有り
タイトル
ガウスの楕円関数論(高木貞治先生著"近世数学史談"より)
その他のタイトル
Gauss and Elliptic Functions
著者
河田, 敬義
著者別名
Kawada, Yukiyoshi
記事種別
Departmental Bulletin Paper
言語名
日本語/Japanese
出版者
上智大学数学教室
掲載誌名
上智大学数学講究録
号
24
開始ページ
1
終了ページ
184
発行日
1986-11
著者版フラグ
publisher
URI
https://digital-archives.sophia.ac.jp/repository/view/repository/20220411006
ダウンロード
2000020527_24.pdf https://digital-archives.sophia.ac.jp/pub/repository/20220411006/pdf/1_0-DC1_b61df82ad6fc9a75115710a291f4752a43491ee54daad76b74042319eaa7991b_1739287476281_2000020527_24.pdf?dl=1
779(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/12(水) 11:41:41.42 ID:rAcOLHcf(5/6) AAS
つづき
といっても、現実を扱った研究から多くの数学が生まれてきたことも事実で、ハーディも純粋数学だけではなく、「真の」数学者として、マックスウェル、アインシュタイン、エディントン、ディラックなどを挙げています。もちろん彼らは「普通の応用数学者」などではなく極めて「秀いでた」人たちです。
ところで、ハーディはこの本の中で 『私は何一つ「有用」なことはしなかった』 と述懐しています。これに対して、彼の数学、あるいはそこから発展した数学が今の情報社会でいかに役立っているかを示すことはできます。たとえば象徴的な出来事として、実用数学の急先鋒であるウェーブレットを提唱した論文のタイトルは『ハーディ関数の定形二乗可積分ウェーブレットへの分解』(グロスマン、モルレ著, 1984)でした。しかし、ハーディに関連する数学が役に立つことをいくら列挙しても、ハーディを慰めることもできず、また反論したことにもなりません。むしろハーディの主張の曲解に繋がるといえるでしょう。
実用至上主義者はしばしば、応用・実用数学だけでなく純粋数学の研究も必要で価値があるという主張をします。ところが、その理由はというと、現時点で役に立たない数学もいずれは役に立つかもしれないからだ、ということがしばしばあります。しかし、数学の価値はそんなところにだけあるわけではありません。社会的に役立つかどうかは別にして,ハーディの言う「真の」数学は数学的実在を捉え、それを明らかにするから価値があるのです。
ハーディ曰く
『数学の定理の「重さ」は、その実用上の重要性(これは普通無視してもよい)にあるのではなく、定義が相互に結びつける数学的な諸概念の意義にある』(前掲書より)
けだし名言です。
ところで、ハーディはこの本の中でしばしばホグベンという人を引き合いに出しています。訳注によればホグベンはイギリスの生物学者です。彼は「真の」数学者ではありませんが、『百万人の数学』という一般向けの啓蒙書でベストセラーを著わしました。ハーディはホグベンについて次のように書いています。
略す
(引用終り)
以上
855: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2025/02/13(木) 14:23:44.42 ID:mxQOAQvq(8/13) AAS
つづき
3:45
一文一文をですね完璧に理解して 次に進ん
3:50
でそれを完璧に理解しようとしてさらに次
3:52
に進むみたいなそういう形そういう読み方
3:54
をしているとあの絶対にですね数学書と
3:57
いうのは読み終わらないしそうやって読む
4:00
ものではないんですこれで似たようなこと
4:03
はですね以前の動画でも話した事あると
4:04
思うんですけれど
4:06
まず最初に全体の運枠ですね枠組を掴む
4:10
というのがすごく重要なんですね
5:12
私が以前ですね指導していた大学
5:14
院の学生の一人でですねそれがですね全然
5:17
できない学生がで巻いたんですがどうゆう
5:20
訳ありそう一定数そういう人がいるんです
5:22
ねつまりどういうことかというと思うなん
5:24
でもかんでも一言一句完璧に
5:26
一つの文を完璧に理解しないと
5:29
次の文に進めないみたいなそういった
5:32
タイプの人というのが
5:34
結構いるんですね
つづく
912: 132人目の素数さん [] 2025/02/14(金) 14:44:49.42 ID:mtVXUXZ1(1) AAS
>>911
このことは基本対称式がニュートン多項式で表せることに対応する
934(1): 132人目の素数さん [] 2025/02/15(土) 03:03:39.42 ID:tNB6oeTf(2/13) AAS
>>26
(引用開始)
(3(Zornの補題) ⇒ 1(選択公理))
{X_λ}_{λ∈Λ}を非空集合の族とする.
A := { g:Σ→∪_{λ∈Λ} X_λ | Σ⊂Λ, 任意のλ∈Σに対してg(λ)∈Xλ }
としてAに ⊂ で順序を入れる.B⊂Aを部分全順序集合とするとき ∪g∈B g ∈ A は B の上界である.
即ち A はZornの補題の仮定を満たす.故に極大元 f∈A を持つ.
もし dom(f)≠Λ であれば f が極大であることに反するので dom(f)=Λ となる.故に f は選択関数である.
(引用終了)
この証明がまかり通るなら、
{X_λ}_{λ∈Λ}を非空集合の族とする.
A' := { g:Λ→∪_{λ∈Λ} X_λ | 任意のλ∈Λに対してg(λ)∈Xλ }
とする。存在例化により選択関数f∈A'が存在する。
でよくね?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s