素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
374: 132人目の素数さん [sage] 2024/01/09(火) 22:53:15.12 ID:lExBawCv(1/7) AAS
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))
1*2*4*6*10 480
+e^(i*2π*1/(2*3*5*7*11))
+e^(i*2π*13^3/(2*3*5*7*11))
+Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}]
+Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}]
+Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}]
+Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}]
+Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}]
+Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}]
+Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}]
+Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 17}]
+Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}]
+Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}]
338+1+35+26+23+17+13+11+7+5+3+1
e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11))
375: 132人目の素数さん [sage] 2024/01/09(火) 23:05:27.32 ID:lExBawCv(2/7) AAS
(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1/2=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
-4.7738256139528681057872538326663778680155965889642227453+ 2.9583188869703097700756859458249181166573469894570i
-9.0857958635868135678582416976274329669070514423097525400- 3.0733600982538487468996812182266789004635976528715i
-3.6831129443236299909236325740470272452449595081046118461- 8.9782218382117303545383202676565523182379224076288i
3.10225665902196712501762391941450159991129502344048864868- 7.5267647987972420637530463404490362777099344431826i
2.97717706048278641787318176514081205465125132468099766889- 2.0132966748044861337334427350882118724796850814798i
-4.773825613952+ 2.95831888697030977i
-9.085795863586- 3.07336009825384874i
-3.683112944323- 8.97822183821173035i
+3.1022566590219- 7.52676479879724206i
+2.9771770604827- 2.01329667480448613i
=-11.4633007023564 - 18.63332452309699751 i
Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]=11.41967170451950178844+18.9254794584064532961632295i-11.4633007023564 - 18.63332452309699751 i≒0 ←Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))
376: 132人目の素数さん [sage] 2024/01/09(火) 23:18:23.05 ID:lExBawCv(3/7) AAS
1*2*4*6*10 480
+e^(i*2π*1/(2*3*5*7*11))
+e^(i*2π*13^3/(2*3*5*7*11))
+Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}]
+Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}]
+Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}]
+Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}]
+Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}]
+Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}]
+Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}]
+Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 16}]
+Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}]
+Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}]
338+1+1+35+26+23+17+13+11+6+5+3+1=480
e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11))
377: 132人目の素数さん [sage] 2024/01/09(火) 23:21:20.36 ID:lExBawCv(4/7) AAS
(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
-4.7738256139528681057872538326663778680155965889642227453+ 2.9583188869703097700756859458249181166573469894570i
-9.0857958635868135678582416976274329669070514423097525400- 3.0733600982538487468996812182266789004635976528715i
-3.6831129443236299909236325740470272452449595081046118461- 8.9782218382117303545383202676565523182379224076288i
2.14588565686102345824797192824291394603103694047283735842- 7.8189197341066978310674713188024685168005390199084i
2.97717706048278641787318176514081205465125132468099766889- 2.0132966748044861337334427350882118724796850814798i
-4.773825613952+ 2.95831888697030977i
-9.085795863586- 3.07336009825384874i
-3.683112944323- 8.97822183821173035i
+2.1458856568610- 7.81891973410669783i
+2.9771770604827- 2.01329667480448613i
=-12.4196717045173 - 18.92547945840645328 i
Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]=11.41967170451950178844+18.9254794584064532961632295i-12.4196717045173 - 18.92547945840645328 i= -1 ←Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))
378: 132人目の素数さん [sage] 2024/01/09(火) 23:36:45.27 ID:lExBawCv(5/7) AAS
Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
Sum[e^(i*2π*prime[k]/(2*3*5*7)), {k, 5, 46}]+e^(i*2π*1/(2*3*5*7))+e^(i*2π*121/(2*3*5*7))=-0.688942 + 2.51378 i
e^(i*2π*143/(2*3*5*7))+e^(i*2π*169/(2*3*5*7))+e^(i*2π*187/(2*3*5*7))+e^(i*2π*209/(2*3*5*7))=1.6889421505813673802324365777259 -2.51377639724034521156697179892091634207165i
(2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1/2か0になる
1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき)
379: 132人目の素数さん [sage] 2024/01/09(火) 23:37:16.54 ID:lExBawCv(6/7) AAS
(2^a*3^b)未満の2,3を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1か0になる
1=Σe^(i*2pi*(X/(2^1*3^1))(a=1,b=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b)) (a>1またはb>1のとき)
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c))(a=1,b=1,c=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) (a>1またはb>1またはc>1のとき)
(2^a*3^b*5^c*7^d)未満の2,3,5,7を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと1/2か0になる
1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d))(a=1,b=1,c=1.d=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d)) (a>1またはb>1またはc>1またはd>1のとき)
(2^a*3^b*5^c*7^d*11^e)未満の2,3,5,7,11を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと-1/2か0になる
-1=Σe^(i*2pi*(X/(2^1*3^1*5^c*7^d*11^e))(a=1,b=1,c=1.d=1,e=1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*5^c*7^d*11^e)) (a>1またはb>1またはc>1またはd>1またはe>1のとき)
380: 132人目の素数さん [sage] 2024/01/09(火) 23:40:41.55 ID:lExBawCv(7/7) AAS
(2^a*3^b*5^c*7^d*・・・*P(n)^z)未満の2,3,・・・P(n)を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと(-1)^nか0になる(nが偶数の時は1,奇数の時は-1)
(-1)^n=Σe^(i*2pi*(X/(2^1*3^1*・・・*P(n)^1))(指数部がすべて1のとき)
0=Σe^(i*2pi*(X/(2^a*3^b*・・・*P(n)^z)) (指数部がすべて1でないとき)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s