[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
279
(1): Mara Papiyas ◆y7fKJ8VsjM [] 2021/10/10(日) 10:55:58.20 ID:WvyKzuhg(2/3) AAS
2chスレ:math
>1.可算多重シングルトン {{・・{{}}・・}}が、
>仮に正則性公理を満たさないとしても、
>”non-well-founded set theory”もあるから、
>存在しうるよ

お🐒のSET A 正則性公理を満たすと証明できず 姑息にもルール変更
 
さすが卑怯卑劣な学歴詐称の工業高卒🐎🦌野郎

>2.後者関数f
> lim n→∞ f({{・・{{}}・・}}n) ={{・・{{}}・・}}ω
> と出来るよ

出来ないよw

ωは極限順序数 したがってf(x)=ωとなるxは存在しない

一方、ωがシングルトンだと、
f(x)=ωとなるxが存在してしまい
ただの後続順序数に成り下がる

要するにお🐒のSET Aは極限順序数を否定し
「0以外の順序数は全て後続順序数」(ドヤ顔)
といいきっちゃう大🐎🦌野郎www

>3.「一番外の{}」なんてのは、無限集合になると、殆ど無意味
>実際、集合論のテキストで、「一番外の{}」を問題にしているものは皆無だよ

なにいってんだ? この工業高校卒の🐎🦌w
そんなこといってっから、おめえはFラン大学にも受からねぇんだよ 🐎🦌w

集合は要素の集まりであるから、当然外側の{}がある
中身の要素が無限個だったら書ききれない、というだけの話
外側の{}自体がなくなるわけではないwww

で、正則性公理っていうのは、
工業高校卒の🐎🦌の貴様にもわかるようにいえば
「集合から 要素をとって、
 それが空集合以外の集合であれば、さらにその要素をとって」
という操作を繰り返した場合、かならず有限回で空集合にいきつくってこと
(集合以外のアトムにいきついてもいいが、
 そもそも集合論ではアトムの存在を認める公理を設定してない)

わかれよ 🐎🦌w
280: Mara Papiyas ◆y7fKJ8VsjM [] 2021/10/10(日) 11:07:32.00 ID:WvyKzuhg(3/3) AAS
>>279
2chスレ:math
に対する回答でしたw

さて
2chスレ:math
に対する回答

ツェルメロのωは、シングルトンではなく、自然数の無限集合

ついでにいうと、最初の非可算順序数ω1は、
シングルトンどころか、可算無限集合ですらなく
非可算無限集合である
(ツェルメロの後者関数を用いる場合
 ω1より小さい順序数は、
 後続順序数ならシングルトン
 極限順序数なら可算無限集合
 となる)

某所で、お🐒のSET Aがわけもわからずコピペした文章に答えがあるw
2chスレ:math

「点列の極限で位相構造を特徴づけられない例として、
 整列順序集合[0,ω1]に順序から定まる位相を入れた空間がある。
 ここで ω1は最小の非可算順序数である。
 実際、この集合において、ω1は明らかに[0,ω1)の閉包に属しているにも関わらず、
 [0,ω1)内のいかなる点列もω1に収束しない。
 なぜなら ω1の非可算性と「可算集合の可算和はまた可算集合になる」という事実により、
  [0,ω1)内の任意の点列に対し、点列に属する点のいずれよりも大きい順序数α<ω1が存在するので、
 ω1の開近傍(α,ω1]には点列の点が存在しえないからである。」
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.028s