[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
458(5): 132人目の素数さん [] 2021/11/22(月) 00:01:57.40 ID:o+kXZxaO(1/4) AAS
>>455-456
誤魔化そうとしているな
前にも言ったが、超越数πを空集合φから組み立てて、最外カッコを示してみなよ>>444
最外カッコが無いことはないが、具体的に示せない
複雑な無限集合になると、そういう場合があるってわけだ
つまり、自然数N(=ω)={0,1,2,・・n・・}で
カッコ{}を外したら、0,1,2,・・n・・ となる
全てのnは有限だが、列の長さは無限長で、最大値は存在しない
ずーと、無限の彼方に続いている
数学として、そういう無限長の列が必要なんだ
だから、無限公理で、無限長の列を作った
無限長の列を作ったら、”n・・”みたく”・・”と書かざるをえない
それを、良いの悪いのと、とやかくいうことが変だよね
468(1): 132人目の素数さん [] 2021/11/22(月) 07:50:38.00 ID:o+kXZxaO(2/4) AAS
>>457
追加参考
http://webcatplus.nii.ac.jp/webcatplus/details/creator/573756.html
Webcat Plus ウェブキャット・プラス 連想×書棚で広がる本探し
郡司 ペギオ幸夫 (1959-)
郡司 幸夫(ぐんじ ゆきお、ペンネームは郡司 ペギオ 幸夫(英 Yukio-Pegio Gunji)、1959年 - )は日本の理学者。 現在、早稲田大学理工学術院基幹理工学部・研究科教授。
この問題に取り組む過程で内部観測と呼ばれる理論を発展させた。 郡司のもつペギオ(Pegio)というペンネーム中のミドルネームは、本当は自分の子供につけるはずの名前だったが、妻に反対されたため自分のペンネームに使っている。 ただ単にペンギンが好きだからという説もある...
「Wikipedia」より
469(3): 132人目の素数さん [] 2021/11/22(月) 07:58:11.74 ID:o+kXZxaO(3/4) AAS
>>463
(引用開始)
>最外カッコが無いことはないが、具体的に示せない
いや、無い。
何番目か定まらないようなカッコは「有る」とは言わない。>>452
(引用終り)
なんだ、そこから躓いているのか?
根が深いね、躓きの
それじゃ、数学科行っても 何を勉強したのやら
おっさん、自分で言っている選択関数>>461はどうなの?
その基準でw
>>461より
そもそも何かの存在を示すのにその例示は必須ではない。
実際、選択公理は選択関数のインスタンスを何等示さずに選択関数の存在を主張している。
そのような抽象思考が数学ってもんだ。インスタンスを見ないと納得できない三歳児には無理。
(引用終り)
>>463と>>461と、主張が矛盾しているぞw
473(5): 132人目の素数さん [] 2021/11/22(月) 08:24:43.79 ID:o+kXZxaO(4/4) AAS
>>464
(引用開始)
>だから、無限公理で、無限長の列を作った
大間違い。
無限公理が存在を謳ってるのは数列ではなく無限集合。
おまえは"…"がすべて同じに見えるようだが、数列表記に現れる"…"と集合表記に現れる"…"はまったく違う。
{0,1,2,…,ω} という集合は存在するが、0,1,2,…,ω という数列は存在しない。
なぜならωが第何項目か定められないから。「自然数を定義域とする関数」との数列の定義に反するから。
不勉強にも程がある。
(引用終り)
なんだ、そこから躓いているのか?
根が深いね、躓きの
それじゃ、数学科行っても 何を勉強したのやら
完全に錯乱しているぞ
{0,1,2,…,ω} は整列集合じゃね?
自然数 N={0,1,2,…}は明らかに、整列集合
だから、ωを一つ追加した {0,1,2,…,ω}も整列集合だ
整列集合だから、定義された順序を使った 0,1,2,…,ω という数列は、存在するよ
下記 wikipediaを、100回音読しろよ
(参考)
https://ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88
整列順序付けられた集合または整列集合(せいれつしゅうごう、英: well-ordered set)とは、整列順序を備えた集合のことをいう。ここで、集合 S 上の整列順序関係 (well-order) とは、S 上の全順序関係 "≦" であって、S の空でない任意の部分集合が必ず ≦ に関する最小元をもつものをいう。あるいは同じことだが、整列順序とは整礎な全順序関係のことである。整列集合 (S, ≦) を慣例に従ってしばしば単純に S で表す。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s