[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
820
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 22:51:02.15 ID:rSmWbt0i(9/11) AAS
>>808
どなたか知らないが、レスありがとう

>x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。

???
簡単に素朴集合論に戻るよ、例えば、下記 集合論 花木章秀で
”集合は「xに関する命題P(x)が真となるようなxの集まり」という形で記述される。
このとき、その集合を {x|P(x)} のように表す」という形で記述される”とあるよね
だから、{x|P(x)} とすれば良い。要は、P(x)を作れば良いでしょ(P(x)で、「xはこうだ」と文を書けば良い)

あるいは別法として、空集合Φを使ってシングルトンを作るとき、{Φ}の次に、{(Φ)}みたく内側にカッコを作る。()→{}の置き換えで、{{Φ}}となる
有限の範囲では、内側にカッコを作るか外側かは、違いがないけど、無限になると違う
内側だと{{・・Φ・・}}となる。外側だと・・{{Φ}}・・となる。(分かると思うが、・・のところは、カッコが続いている)

この場合、>>779同様に幾何的に考えると
 >>782に維新さんが書いているように、一番外側の円を半径3/4として、そこから内側に半径1/2,1/3,…,1/n,…の円を描く
円の中心は原点0がある。この原点0を空集合Φと見なせば良い
そして、>>779のように、各円の北極と南極に切れ目を入れて、左半円と右半円に分けて、半円をカッコに変形すれば
集合{{・・Φ・・}}ができる。この集合のカッコには、一番外側を1番として、その内の半径1/2が2番、その内の半径1/3が3番、と順にカッコに附番ができる
そして、附番n以下全ての自然数を渡る。よって、一番外側に"{"と"}"が出来た
QED

(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/set.html
http://math.shinshu-u.ac.jp/~hanaki/edu/set/set2011.pdf
集合論
花木章秀
2011年度後期(2011/09/12)
P15
Chapter2
2.1集合
集合は「xに関する命題P(x)が真となるようなxの集まり」という形で記述される。このとき、その集合を
{x|P(x)}
のように表す。例えば「100以上の整数の集まり」であれば
{x|x∈Zかつx≧100}
のように表す。
「かつ」というのを省略、あるいは英語で表して
{x|x∈Z,x≧100},{x|x∈Z and x≧100}
のようにも表す。
(引用終り)
以上
822: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 23:16:09.55 ID:rSmWbt0i(11/11) AAS
>>820
>一番外側の円を半径3/4として、そこから内側に半径1/2,1/3,…,1/n,…の円を描く

一番外側の円は、半径3/4として、半径1を外しておくと
次に、1と2の間で、同じように同心円ができるよ

0〜1で、ωの同心円で、その外にまた、1〜2の間の同心円ができて、
0〜2で、2ωの同心円
 ・
 ・
 ・
と続けられる
という仕掛けです(^^
823
(1): 132人目の素数さん [] 2020/11/08(日) 23:34:47.71 ID:BM2uk/CN(3/4) AAS
>>820
ナンセンス。
>x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。
↑に反論するなら
「一番外側の"{"と"}"が無くても集合である」
を示さなければならないが、まったく明後日のことを述べておりナンセンス。
825: 132人目の素数さん [sage] 2020/11/09(月) 06:16:01.56 ID:SmS9RLVD(1/8) AAS
>>820
>簡単に素朴集合論に戻るよ、
>例えば、下記 集合論 (人名略)で
>…とあるよね
>だから、{x|P(x)} とすれば良い。
>要は、P(x)を作れば良いでしょ
>(P(x)で、「xはこうだ」と文を書けば良い)

で、肝心のP(x)は何ですか?まっさきに、それ示さないと
826: 132人目の素数さん [sage] 2020/11/09(月) 06:26:07.39 ID:SmS9RLVD(2/8) AAS
>>820
>あるいは別法として、
>空集合Φを使ってシングルトンを作るとき、
>{Φ}の次に、{(Φ)}みたく内側にカッコを作る。
>()→{}の置き換えで、{{Φ}}となる
>有限の範囲では、内側にカッコを作るか外側かは、違いがないけど、
>無限になると違う
>内側だと{{・・Φ・・}}となる。
>外側だと・・{{Φ}}・・となる。
(中略)
>一番外側の円を半径3/4として、
>そこから内側に半径1/2,1/3,…,1/n,…の円を描く
>円の中心は原点0がある。この原点0を空集合Φと見なせば良い
くだくだ書いてるけど、要するに
「{{…}}じゃなく{{…Φ…}}だから基礎の公理を満たす」
と言い張ってる?

でも{{…Φ…}}の最外側の{}を外しても、同じ{{…Φ…}}だから
有限回でΦには到達できず、結局、基礎の公理は満たさないんだけど

ちゃんと、まじめに考えてる?
お絵かきしただけで、集合ができた!と早とちりしてない?

言葉だけで考え切らないと大学数学は一つも理解できないよ
827: 132人目の素数さん [sage] 2020/11/09(月) 06:33:54.28 ID:SmS9RLVD(3/8) AAS
>>820
>一番外側の円を半径3/4として、
>そこから内側に半径1/2,1/3,…,1/n,…の円を描く
>円の中心は原点0がある。この原点0を空集合Φと見なせば良い

そもそも見なせないじゃん

Φを原点0としたとき、{Φ}となる円はどれ?

任意のε>0について、1/n<εとなる1/nがあるよね?
で、1/nより小さい1/m(mはnより大きな自然数)
は無限にあるよね?

つまり、どの円も{Φ}になりえないんだけど

いや、こりゃヌケサクだね
830: 132人目の素数さん [sage] 2020/11/09(月) 06:57:01.53 ID:SmS9RLVD(6/8) AAS
>>823
>(>>820は)まったく明後日のことを述べておりナンセンス。

◆yH25M02vWFhPは、集合={}を用いた”図形”、と思ってるみたい(誤解だけど)

図形が具体的に書けさえすれば、
即、集合として存在する、と思ってるみたい(誤解だけど)

集合の公理とか一つも知らないし、そもそも知る気もないみたい
自分の直感こそが公理だ、と思ってるみたい(実に傲岸不遜な態度だけど)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s