[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
795
(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 07:41:31.82 ID:rSmWbt0i(1/11) AAS
(転載)
現代数学の系譜 カントル 超限集合論他 3
2chスレ:math
243 名前:132人目の素数さん[] 投稿日:2020/11/03(火) 03:24:47.92 ID:EzLUFeKC
>決して{…{{{}}}…}ではありません
{}:=x1, {{}}:=x2, … とおく。
そもそもx∞は集合たりえない。
なぜなら、正則性公理の要件「自分自身と交わらない要素を持つ。」を満たさないから。
なぜなら、x∞={x∞}であって、x∞∩x∞=x∞≠{} だから。
(引用終り)

どなたか知らないがレスありがとう
良い質問ですね
1)
・"正則性公理の要件「自分自身と交わらない要素を持つ。」"だから、x∞に極小元の存在を示せば足りる
 (下記の「数理論理学II 坪井明人」”正則性公理”ご参照)
・x∞の極小元は、明らかに空集合Φ={}です。よって、正則性公理に反しないQED
2)
・”x∞={x∞}”の証明がない
・つーか、これ違う
 ∵多分x∞の定義が違うだろうし、順序数と基数の∞との混同でしょう
 つまり、Zermeloのシングルトンによって
 {}:=x1, {{}}:=x2, … で、その極限としてωが出来たとして
 その後に、ω+1={ω}、ω+2={ω+1}、・・・と続いていくよ
 その隙間を埋める極限として lim n→∞ xn =ω として定義しているってこと
・なお、この議論は、基礎論的には順序がおかしい
 ∵ ” lim n→∞”は、ノイマン構成などで、自然数Nが出来た後の議論だからね
 でも、自然数Nが出来た後なら、この議論は許されるよ

つづく
796: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 07:41:52.44 ID:rSmWbt0i(2/11) AAS
>>795
つづき

(参考)>>785より
https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86
正則性公理
正則性公理(せいそくせいこうり、英: axiom of regularity)は、別名基礎の公理(きそのこうり、英: axiom of foundation) とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。選択公理と同様、様々な同値な命題が存在する。
定義
空でない集合は必ず自分自身と交わらない要素を持つ。 ∀ A(A≠ Φ ⇒ ∃ x∈ A∀ t∈ A(t not∈ x))
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・任意の空でない集合xに対して、 ∃ y∈x,x∩y=0
・∀xについて、∈がx上well-founded
・∀xについて、無限下降列である x∋ x_1∋ x_2∋ ・・・ は存在しない。
・V=WF
ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。

http://www.math.tsukuba.ac.jp/~tsuboi/under.html
学群関係 Akito Tsuboi's Home Page 坪井明人
http://www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf
数理論理学II 坪井明人
目 次
第 1 章 公理的集合論の基礎
1.1.10 基礎の公理(正則性公理) . . . . . . . . . . .. . 9
(引用終り)
以上
797: 132人目の素数さん [sage] 2020/11/08(日) 07:54:01.96 ID:bKzT4Sg/(1/15) AAS
>>795
>Zermeloのシングルトンによって
>{}:=x1, {{}}:=x2, … で、
>その極限としてωが出来たとして

質問1.極限、どうやってとるの?
 
>その後に、ω+1={ω}、ω+2={ω+1}、・・・と続いていくよ

それは誰も否定してないけど

>その隙間を埋める極限として lim n→∞ xn =ω として定義しているってこと

質問2.ω={x}となるというけど、xは具体的に何?
798
(1): 132人目の素数さん [sage] 2020/11/08(日) 07:54:35.80 ID:bKzT4Sg/(2/15) AAS
>>795
>Zermeloのシングルトンによって
>{}:=x1, {{}}:=x2, … で、
>その極限としてωが出来たとして

質問1.極限、どうやってとるの?
 
>その後に、ω+1={ω}、ω+2={ω+1}、・・・と続いていくよ

それは誰も否定してないけど

>その隙間を埋める極限として lim n→∞ xn =ω として定義しているってこと

質問2.ω={x}となるというけど、xは具体的に何?
799
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 08:15:39.92 ID:rSmWbt0i(3/11) AAS
>>794
> 1,  2,・・,  n,・・,  ∞
>  ↓↑
> π1,π2,・・,πn,・・,π∞=π

まあ、そこは

 1,  2,・・,  n,・・,  ω
  ↓↑
 π1,π2,・・,πn,・・,πω=π

と読み替えて貰えば良い
普通、例えば、>>795 のように、”lim n→∞ xn =ω”と書くとき
∞は添え字集合としてのωをも意味するけれども、歴史的慣習として∞を使っているだけのこと
意味同じ

そして、>>795に書いたけれど、Zermeloのシングルトンによる自然数の構成だと、歴史的に批判されたらしいが、順序数の構成は良いけど、基数はどうするの? と
で、Zermeloが批判どう応えたかしらないが
1.順序数として、0th=Φ(空集合)、1st={Φ}、2nd={{Φ}}、3rd={{{Φ}}}、・・・、nth={・・{Φ}・・}、・・→ω
2.基数としては、0=Φ(空集合)、1={Φ}、2={0,1}、3={0,1,2}、・・・、n={0,1,2,・・n-1}、・・→∞ とすれば、よかんべ

これで、上記2の基数の方に、無限公理を適用すれば、無限集合としての自然数の集合Nが出来るよ
そこから、あらためて ∞や、ωを定義すれば良い

なお、”・・→∞”とか”・・→ω”とかは、ご説明として書いただけで、
数学的には蛇足(循環論法になる)で取った方がいいけど、5chの議論として分り易くしたんだ

これが分からない?
IUT無理

つづく
808
(2): 132人目の素数さん [] 2020/11/08(日) 12:16:29.45 ID:BM2uk/CN(1/4) AAS
>>795
>・”x∞={x∞}”の証明がない
x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。
x∞に一番外側の"{"と"}"が有るならそれらを外したものはx∞自身ですから正則性公理に反します。
これ以外のケース(例えば、有り且つ無い)はありませんから、結局x∞は集合の要件を満たしません。

>・x∞の極小元は、明らかに空集合Φ={}です。よって、正則性公理に反しないQED
いいえ、{}はx∞の元ではありません。

>・つーか、これ違う
> ∵多分x∞の定義が違うだろうし、順序数と基数の∞との混同でしょう
定義は議論の出発点です。定義が違うと言われても意味不明です。
違う定義の議論をしたいならまずその定義を示して下さい。
809: 132人目の素数さん [] 2020/11/08(日) 12:25:04.00 ID:BM2uk/CN(2/4) AAS
>>795
>{}:=x1, {{}}:=x2, … で、その極限としてωが出来たとして
まず集合列の収束の定義を示して下さい。
次にその定義に沿って集合列 {}, {{}}, … が収束することを証明して下さい。
それらが示されない限りあなたの主張はナンセンスです。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s