[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
790
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/07(土) 22:09:26.00 ID:4jX6N+0z(7/9) AAS
>>789

維新さん、さー、前から思っているけど、
あんたの数学の理解って、”数学記号の暗記レベル”で止まっていて、
理解浅いと思うんだよね

>0∈1∈2∈3・・・・∈n-1∈n∈N
>この列・・・有限です
>もちろん、いくらでも長い上昇列はつくれますが・・・どれも有限です
>要するに、これがポイント

あのー、それじゃ、添字集合に無限集合たる自然数N使えないじゃん
で、無限列のコーシー列が、有限列になるぜよ
実数の構成(下記)どうすんの?

例えば、円周率 π = 3.14159・・・
これ、有限桁で打ち切れば、πの近似値だよ
小数第n桁までの近似値をπnとして、π1,π2,・・,πn,・・→∞でπ∞=π
これ一つのコーシー列の例であって、πは超越数だから、n→∞ に出来ないのはおかしいぜw

あんたIUT無理

(参考)
https://ja.wikipedia.org/wiki/%E6%B7%BB%E5%AD%97%E9%9B%86%E5%90%88
添字集合
添字集合(index set)は、別の集合の元に対して「ラベル」付けを行うときの、「ラベル」の集合を言う[1]。
多くの場合、添字は添字記法と呼ばれる、典型的には記号の上方や下方に置かれ、本文に用いられる文字よりやや小さな文字や数字を用いる記法に従って書かれる。添字が、上方に置かれるとき上付き添字(うえつきそえじ、superscript)、下方に置かれるとき下付き添字(したつきそえじ、subscript)と呼ばれる。

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97
コーシー列
コーシー数列
無限数列 (xn) について
im _n,m→∞ |xn-xm|=0
が成立するとき、数列 (xn) はコーシー的である、コーシー性を持つ、あるいはコーシ−列であるという。有限数列 (x1, x2, ..., xk) は xk = xk+1 = xk+2 = … と延長することにより、コーシー列と見なせる。

実数の構成
実数の構成法の一つに、完備化と呼ばれる有理コーシー列から実数を定めるものがある。

https://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%8E%87
円周率とは、円の円周の長さの、円の直径に対する比率のこと[1]
小数点以下35桁までの値は次の通りである。
π = 3.14159 26535 89793 23846 26433 83279 50288 …
(引用終り)
以上
791
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/07(土) 22:18:55.12 ID:4jX6N+0z(8/9) AAS
>>790
補足

小数第n桁までの近似値をπnとして、
無限列が2列できる

 1,  2,・・,  n,・・,  ∞
  ↓↑
π1,π2,・・,πn,・・,π∞=π

こういう一対一対応になるよね

で、下のπの(無限)コーシー列が可能なら
その上の無限自然数列 ”1,  2,・・,  n,・・,  ∞”も可能だよ
793: 132人目の素数さん [sage] 2020/11/07(土) 22:38:53.89 ID:zpeR/n4w(13/14) AAS
>>790
>あのー、それじゃ、添字集合に無限集合たる自然数N使えないじゃん

? 使えますよ

>で、無限列のコーシー列が、有限列になるぜよ

? ならないよ

>例えば、円周率 π = 3.14159・・・
>これ、有限桁で打ち切れば、πの近似値だよ
>小数第n桁までの近似値をπnとして、
>π1,π2,・・,πn,・・→∞でπ∞=π
>これ一つのコーシー列の例であって、
>πは超越数だから、n→∞ に出来ないのはおかしいぜw

? なぜ、全く無関係な小数を持ち出すのかな?

0∈1∈2∈3・・・∈n-1∈n・・・
がNで終わる無限列になる、といいはりたい?

では列の最後の…x∈Nのxが何になるか
具体的に書いていただけますか?
ぐ・た・い・て・き に

チューショー的とかいって誤魔化すのは
絶対やめてくださいね 見苦しいから
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.037s