[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
786
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/07(土) 13:45:15.27 ID:4jX6N+0z(5/9) AAS
>>785
つづき

https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86
ペアノの公理
集合論において標準的となっている自然数の構成は以下の通りである。
空集合を 0 と定義する。
0:=Φ ={}.
任意の集合 a の後者は a と {a} の合併集合として定義される。
suc(a):=a∪{a}.
0 を含み後者関数について閉じている集合のひとつを M とする。
自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。
無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
0 := {}
1 := suc(0) = {0} = {{}}
2 := suc(1) = {0, 1} = {0, {0}} = { {}, {{}} }
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { {}, {{}}, { {}, {{}} } }
等々である。 この構成法はジョン・フォン・ノイマンによる[1] 。
(引用終り)

ここで、ノイマン構成では
集合として(自然数nを集合と見て)、無限の上昇列ができる
0∈1∈2∈3・・・・∈n-1∈n・・・N(最後は、∈の連鎖としての極限で、自然数の集合Nが存在するってこと)
この∈の上昇列は、有限長ではないことは自明だよ
これを逆に辿れば、無限の降下列になるが、正則性公理に反するものではないことは自明
(そもそも、無限の上昇列を禁止したらおかしいぜw)

つまり、正則性公理の禁止しているの無限降下列
x∋ x_1∋ x_2∋ ・・・
であって、底抜けの無限降下列だよ

一方、ノイマン構成の場合は、ある集合から作った上昇列だから、それを逆に辿れば、必ずそのような場合は降下列の底があるよ
だから、それは正則性公理には、反しないよ
それは、Zermeloのシングルトン構成によるωも全く同じことだ
以上
787: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/07(土) 13:46:41.36 ID:4jX6N+0z(6/9) AAS
>>786 タイポ訂正

つまり、正則性公理の禁止しているの無限降下列
 ↓
つまり、正則性公理の禁止しているのは無限降下列
789
(1): 132人目の素数さん [sage] 2020/11/07(土) 16:28:44.01 ID:zpeR/n4w(12/14) AAS
>>786
>ここで、ノイマン構成では
>集合として(自然数nを集合と見て)、無限の上昇列ができる
>0∈1∈2∈3・・・・∈n-1∈n・・・N
>(最後は、∈の連鎖としての極限で、自然数の集合Nが存在するってこと)
>この∈の上昇列は、有限長ではないことは自明だよ

”そっから、ずっこけているのか?”

・・・あっ、すみません

某大統領と🐶🐵の中のグレタちゃんみたいな返し、やっちゃいました
https://www.youtube.com/watch?v=8W1rV-1a1Hw


・・・閑話休題

きっちり書けば誰でもわかる明らかなことですが

0∈1∈2∈3・・・・∈n-1∈n∈N

この列・・・有限です

もちろん、いくらでも長い上昇列はつくれますが・・・どれも有限です

要するに、これがポイント

n∈N

Nが任意のnを要素として持つので、こういうことが可能です

これがもし、唯一の要素しか持たないなら、できない芸当ですね

>これを逆に辿れば、無限の降下列になるが、
>正則性公理に反するものではないことは自明

有限列を逆にたどっても有限列なので
正則性公理に反しないことはそれこそ自明

>(そもそも、無限の上昇列を禁止したらおかしいぜw)

無限の上昇列は、最後が存在しません

したがって、ひっくりかえしたら、最初が存在しません

それが、>>779でいうと、一番外側の{}が存在しないことにあたります

最後に一言

「とてもばかげている。
 ◆yH25M02vWFhPは怒りのコントロールに取り組み、
 安達氏と大学時代の数学の教科書を読み直さなければならない。
 落ち着け◆yH25M02vWFhP、落ち着け!」

・・・ごめん、またやっちゃいました
903: 132人目の素数さん [] 2020/11/27(金) 01:40:57.15 ID:fP2aKWhH(4/5) AAS
>>786
>一方、ノイマン構成の場合は、ある集合から作った上昇列だから、それを逆に辿れば、必ずそのような場合は降下列の底があるよ
>だから、それは正則性公理には、反しないよ
>それは、Zermeloのシングルトン構成によるωも全く同じことだ
ではωから逆に辿ってその前者を示して下さい。
もし示せたらωが極限順序数であることと矛盾しますが、がんばって示して下さいねー
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s