[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
779(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/07(土) 10:40:22.70 ID:4jX6N+0z(2/9) AAS
>>765
若干スレチだが、行きがかり上
Zermeloのシングルトン構成によるω(=最小極限順序数(可算無限相当))を考えるに
基礎論としては、ちょっと裏技だが、有理数体と数直線、デカルト平面(x,y)を使って幾何的にかんがえるのが分り易いと思う
1.要するに、Zermeloのシングルトン構成によるωは、”・・・{{・・{ 0 }・・}}・・・” ってことで、タマネギのように芯があって皮が多重になっているよう
その皮が可算無限重だってことだね
2.これを多重同心円として考える
このとき、nの逆数1/nを考えて
1,2,3.・・,n,・・→1/1,1/2,1/3,・・,1/n,・・
という対応で考えるのが見やすい
3.デカルト平面(x,y)で、原点0を中心とする半径rの円、x^2+y^2=r^2
ここで、r=1-1/2,1-1/3,・・,1-1/n,・・ という数列を考える
lim n→∞ 1-1/n=1 (∵ lim n→∞ 1/n=0 )
4.r=1-1/2,1-1/3,・・,1-1/n,・・の円は、原点0を中心とする半径rの(可算)無限に重なった同心円
これで、1,2,3.・・,n,・・で、2以降に対応する円が出来た。1に相当する円を、0〜1/2の間に一つ作る。例えば、r=1/4とでもしておく
5.こうして出来た(可算)無限の多重同心円は、内側から1,2,3.・・,n,・・と全ての自然数と対応が付く
6.ここで、各円の北極と南極に切れ目を入れて、左半円と右半円に分ける
分けた左半円を、位相的に変形して”{”、右半円を、同様に変形して”}”とすると
あ〜ら不思議、”・・・{{・・{ 0 }・・}}・・・”のできあがりぃ〜!(^^
基礎論として、裏技なのは、
最初はgoo!(グー) ならぬ、空集合と公理しか使えないのに、
”有理数体と数直線、デカルト平面(x,y)、円の方程式”だと?、それ使えないよね?
けど、こう考えたら、別に”・・・{{・・{ 0 }・・}}・・・”の存在って、なんら数学として矛盾していないって分かる
なんら数学として矛盾していない存在って、存在するって認めた方が便利なこと多いんだ、数学ではいつものこと
現代数学の抽象的な数学概念って、みんなこんなもの
クロネッカーは言いました! 自然数以外は、人が勝手にかんがえたものだぁ〜!
でも21世紀の数学では、「クロネッカーさん、あんたの考え古いな〜!」(^^
これが分からないと、IUTムリ
780: 132人目の素数さん [sage] 2020/11/07(土) 11:02:12.54 ID:zpeR/n4w(8/14) AAS
>>779
>Zermeloのシングルトン構成によるωは、
>”・・・{{・・{ 0 }・・}}・・・”
>ってことで、
・・・{{・・{ 0 }・・}}・・・
それ、集合ですか?
集合なら、一番外側の{}がある筈ですよね?
一番外側の{}を取り除いた中身が、要素の列ですから
Q1. ・・・{{・・{ 0 }・・}}・・・
の一番外側の{}の位置を具体的に示してください
Q2. ・・・{{・・{ 0 }・・}}・・・
の一番外側の{}を外した中身を具体的に示してください
Q1に答えられない場合
「・・・{{・・{ 0 }・・}}・・・は集合でない」
Q2に答えられない場合
「・・・{{・・{ 0 }・・}}・・・の要素が分からない」
>現代数学の抽象的な数学概念って、みんなこんなもの
{}による具体的な図形として存在しても、
集合の公理を満たさないと、集合ではないですね
それが公理論ですから
IUTとかいう以前じゃないですかね?
P.S
三大「死に体」
1. M氏のIUT
2. T氏の大統領選挙
3. S氏の可算無限重シングルトン
781: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/07(土) 11:13:41.99 ID:4jX6N+0z(3/9) AAS
>>779
追加ご参考
https://en.wikipedia.org/wiki/Transfinite_number
Transfinite number
Definition
Any finite number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set[5] (e.g., "the third man from the left" or "the twenty-seventh day of January"). When extended to transfinite numbers, these two concepts become distinct. A transfinite cardinal number is used to describe the size of an infinitely large set,[3] while a transfinite ordinal is used to describe the location within an infinitely large set that is ordered.[5] The most notable ordinal and cardinal numbers are, respectively:
・ω(Omega): the lowest transfinite ordinal number. It is also the order type of the natural numbers under their usual linear ordering.
・アレフ_0 (Aleph-naught): the first transfinite cardinal number. It is also the cardinality of the infinite set of the natural numbers. If the axiom of choice holds, the next higher cardinal number is aleph-one, アレフ_1. If not, there may be other cardinals which are incomparable with aleph-one and larger than aleph-naught. Either way, there are no cardinals between aleph-naught and aleph-one.
The continuum hypothesis is the proposition that there are no intermediate cardinal numbers between アレフ_0 and the cardinality of the continuum (the cardinality of the set of real numbers):[3] or equivalently that アレフ_1 is the cardinality of the set of real numbers. In Zermelo-Fraenkel set theory, neither the continuum hypothesis nor its negation can be proven without violating consistency.
782(1): 132人目の素数さん [sage] 2020/11/07(土) 11:14:22.87 ID:zpeR/n4w(9/14) AAS
>>779とは逆に
α.一番外側の円を半径1として
そこから内側に半径1/2,1/3,…,1/n,…の円を描く
β.この場合、一番外側の円も、その中身も明確
γ.しかし、これも集合にはならない
というのは、端的にいえば、芯がないから
基礎の公理を満たすには、有限回の皮剥きで芯に到達しなければならない
しかし、上記の図形は延々と皮むきできるから NG
δ.とはいえ、そもそも一番外側の皮がどこにあるかわからない>>779よりはまし
789(1): 132人目の素数さん [sage] 2020/11/07(土) 16:28:44.01 ID:zpeR/n4w(12/14) AAS
>>786
>ここで、ノイマン構成では
>集合として(自然数nを集合と見て)、無限の上昇列ができる
>0∈1∈2∈3・・・・∈n-1∈n・・・N
>(最後は、∈の連鎖としての極限で、自然数の集合Nが存在するってこと)
>この∈の上昇列は、有限長ではないことは自明だよ
”そっから、ずっこけているのか?”
・・・あっ、すみません
某大統領と🐶🐵の中のグレタちゃんみたいな返し、やっちゃいました
https://www.youtube.com/watch?v=8W1rV-1a1Hw
・・・閑話休題
きっちり書けば誰でもわかる明らかなことですが
0∈1∈2∈3・・・・∈n-1∈n∈N
この列・・・有限です
もちろん、いくらでも長い上昇列はつくれますが・・・どれも有限です
要するに、これがポイント
n∈N
Nが任意のnを要素として持つので、こういうことが可能です
これがもし、唯一の要素しか持たないなら、できない芸当ですね
>これを逆に辿れば、無限の降下列になるが、
>正則性公理に反するものではないことは自明
有限列を逆にたどっても有限列なので
正則性公理に反しないことはそれこそ自明
>(そもそも、無限の上昇列を禁止したらおかしいぜw)
無限の上昇列は、最後が存在しません
したがって、ひっくりかえしたら、最初が存在しません
それが、>>779でいうと、一番外側の{}が存在しないことにあたります
最後に一言
「とてもばかげている。
◆yH25M02vWFhPは怒りのコントロールに取り組み、
安達氏と大学時代の数学の教科書を読み直さなければならない。
落ち着け◆yH25M02vWFhP、落ち着け!」
・・・ごめん、またやっちゃいました
820(6): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 22:51:02.15 ID:rSmWbt0i(9/11) AAS
>>808
どなたか知らないが、レスありがとう
>x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。
???
簡単に素朴集合論に戻るよ、例えば、下記 集合論 花木章秀で
”集合は「xに関する命題P(x)が真となるようなxの集まり」という形で記述される。
このとき、その集合を {x|P(x)} のように表す」という形で記述される”とあるよね
だから、{x|P(x)} とすれば良い。要は、P(x)を作れば良いでしょ(P(x)で、「xはこうだ」と文を書けば良い)
あるいは別法として、空集合Φを使ってシングルトンを作るとき、{Φ}の次に、{(Φ)}みたく内側にカッコを作る。()→{}の置き換えで、{{Φ}}となる
有限の範囲では、内側にカッコを作るか外側かは、違いがないけど、無限になると違う
内側だと{{・・Φ・・}}となる。外側だと・・{{Φ}}・・となる。(分かると思うが、・・のところは、カッコが続いている)
この場合、>>779同様に幾何的に考えると
>>782に維新さんが書いているように、一番外側の円を半径3/4として、そこから内側に半径1/2,1/3,…,1/n,…の円を描く
円の中心は原点0がある。この原点0を空集合Φと見なせば良い
そして、>>779のように、各円の北極と南極に切れ目を入れて、左半円と右半円に分けて、半円をカッコに変形すれば
集合{{・・Φ・・}}ができる。この集合のカッコには、一番外側を1番として、その内の半径1/2が2番、その内の半径1/3が3番、と順にカッコに附番ができる
そして、附番n以下全ての自然数を渡る。よって、一番外側に"{"と"}"が出来た
QED
(参考)
http://math.shinshu-u.ac.jp/~hanaki/edu/set.html
http://math.shinshu-u.ac.jp/~hanaki/edu/set/set2011.pdf
集合論
花木章秀
2011年度後期(2011/09/12)
P15
Chapter2
2.1集合
集合は「xに関する命題P(x)が真となるようなxの集まり」という形で記述される。このとき、その集合を
{x|P(x)}
のように表す。例えば「100以上の整数の集まり」であれば
{x|x∈Zかつx≧100}
のように表す。
「かつ」というのを省略、あるいは英語で表して
{x|x∈Z,x≧100},{x|x∈Z and x≧100}
のようにも表す。
(引用終り)
以上
901: 132人目の素数さん [] 2020/11/27(金) 01:08:40.88 ID:fP2aKWhH(2/5) AAS
>>779
>1.要するに、Zermeloのシングルトン構成によるωは、”・・・{{・・{ 0 }・・}}・・・” ってことで、タマネギのように芯があって皮が多重になっているよう
> その皮が可算無限重だってことだね
だーかーらー
集合論なのに集合じゃないもの持ち出して何がしたい?
902: 132人目の素数さん [] 2020/11/27(金) 01:13:03.59 ID:fP2aKWhH(3/5) AAS
>>779
>けど、こう考えたら、別に”・・・{{・・{ 0 }・・}}・・・”の存在って、なんら数学として矛盾していないって分かる
>なんら数学として矛盾していない存在って、存在するって認めた方が便利なこと多いんだ、数学ではいつものこと
>現代数学の抽象的な数学概念って、みんなこんなもの
抽象化と無秩序化を混同するなw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s