[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
751(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 18:57:28.52 ID:lTaOluRt(3/3) AAS
>>750
>矛盾を導く つまり最低最悪
矛盾導いてないよ
もともと、ωにはω-1つまり直前の前者は存在しない
∵ ωは極限順序数(下記) (だから、”ω-1”を持ち出すことが、最初から間違っている)
そして、濃度が1なる集合ωが存在すると考えるだけのこと
それは、
集合列 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............で、
(ここに、ω以外は、全て直前の前者を要素とするシングルトンであり、ωのみ直前の前者を持たない)
このωは、集合として濃度1と考えるってこと
濃度1と考えるってことと、ω-1が存在しないこととは、なんら数学的な矛盾はない
集合の濃度1だから、シングルトンと呼ぶってことだけさ
(参考)
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。
753: 132人目の素数さん [sage] 2020/11/04(水) 19:29:43.12 ID:26WHSv4q(11/16) AAS
>>751
>集合列 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............で、
上記の場合、0とω以外の後続順序数はシングルトン
しかし、そうでない順序数はシングルトンではない
これが答え 0以外の全てがシングルトンと考える
◆yH25M02vWFhPは論理的思考力ゼロのidiot!
・・・とMara Papiyasならいうだろう
754(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 21:38:29.56 ID:dk/KhN0S(7/8) AAS
>>751 補足
1.von Neumannの自然数構成法を、出来上がった後で、眺めてみると
結局、自然数の集合Nとは、数列Sn:=0,1,2,・・・,n (0からnまでの自然数を順に並べた数列)
としたもの Nn:={Sn}={0,1,2,・・・,n} (nは有限)
で、n→∞ を考えて、lim n→∞ Nn={0,1,2,・・・,n,・・・}=N (つまり、これが全ての自然数を含む自然数の集合Nになる)
さらに、Neumannの自然数構成法では、自然数の集合Nが即ち順序数でのωになる(N=ωだ)
2.で、同じことをZermeloのシングルトンによるωの構成で考えると、同様に極限を考えることができて
0 := {}, suc(a) := {a} と定義して(>>731より)
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になるが
ここで、Singl_n:={・・・{0}・・・} (つまり{0}で、カッコ{}がn重のシングルトン)として
ω:=lim n→∞ Singl_n と定義すれば良い
これで、{0}のカッコ{}が∞重のシングルトンが定義できた
また、Zermeloのシングルトンによる自然数の集合Nは、上記1と同様だ( lim n→∞ Nn={0,1,2,・・・,n,・・・}=N )
3.つまり、基礎論的には Neumannの方法がスマートだが、手間を厭わなければ、Zermelo法でも 数学的には同じように自然数の集合Nと順序数ωとが構成できる
(なお、後者関数の選び方は、無数に可能だが、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」(下記”ペアノの公理”ご参照))
QED (^^;
つづく
897: 132人目の素数さん [] 2020/11/26(木) 21:45:33.44 ID:bsElfVLa(5/7) AAS
>>751
>集合列 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............で、
>(ここに、ω以外は、全て直前の前者を要素とするシングルトンであり、ωのみ直前の前者を持たない)
盛大に矛盾w
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............が列ならωの前者が存在しなくてはならない。
ωの前者が存在しないなら0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............は列を成していない。
馬鹿丸出しw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 3.018s*