[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
742
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 08:13:26.47 ID:dk/KhN0S(6/8) AAS
>>732-733

1.シングルトンのωに対して、そもそも存在しないω−1を考えて、矛盾がおきるから、存在しないというところが変(^^
2.それなら、ノイマンの後者関数によるωも同じだ

3.要するに、ノイマンのωにしろ、Zermeloのシングルトンによるωしろ、結局は抽象的な現代数学の思念の産物なのです
4.それは、自然数(=ある前者があって その後者関数から作られる普通の順序数)とは、異なる性質を持って良い!

5.その抽象的な思考ができないと、Zermeloのシングルトンによるωの存在は理解できないだろう

6.一つの直観的な理解は、極限順序数の”極限”から、自然数n→∞の極限として理解することだろうね
7.つまり、シングルトンという性質(=濃度1)を持つ”極限”の順序数(としての集合)として、ωを理解することだ(それは、ノイマン構成で自然数や実数が、定義できた後でなら可。∵添字集合が使える)

https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。

https://ja.wikipedia.org/wiki/%E6%B7%BB%E5%AD%97%E9%9B%86%E5%90%88
添字集合
添字集合(そえじしゅうごう、index set)は、別の集合の元に対して「ラベル」付けを行うときの、「ラベル」の集合を言う[1]。
743
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 14:45:17.18 ID:lTaOluRt(1/3) AAS
>>742
> 3.要するに、ノイマンのωにしろ、Zermeloのシングルトンによるωしろ、結局は抽象的な現代数学の思念の産物なのです
> 4.それは、自然数(=ある前者があって その後者関数から作られる普通の順序数)とは、異なる性質を持って良い!

補足説明するよ
・例えば、コーシー列:有理数からなるコーシー列で実数、例えばπなどの超越数ができる
 超越数は分数表示ができず、数の性質が”有理数→超越数”に変わっている
・例えば、ωはリーマン球面の北極点に例えることができる
 複素数のガウス平面を丸めて、リーマン球面ができる
 いわゆる一点コンパクト化(下記)。無限遠の点∞を付け加える。こうすると、理論的にすっきりするのです
 点∞はある種の極限で、ガウス平面には存在しない。つまり、他の複素数とは、その性質を異にするのです
・Zermeloのシングルトンによるωも、ある種の一点コンパクト化
 で、この種コンパクト化は後者関数の選び方にはよらない
・普通は、”自然数n→∞の極限”とか、”コンパクト化”は書かない。避ける
 ∵そうかくと、基礎論的にはまずいから。循環論法になるよ
 つまり、基礎論として最初は空集合と公理のみからスタートする
 その時点では”極限”も”コンパクト化”も言えない
 けど、何らかの手段(例えばノイマンとか)で、全部自然数とか実数とか出来上がってからなら、一段高い立場からは言える。それは循環論法でないよね

(参考)
https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97
コーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。
目次
1 コーシー数列
1.1 実数におけるコーシー列
有限数列 (x1, x2, ..., xk) は xk = xk+1 = xk+2 = … と延長することにより、コーシー列と見なせる。
実数はコーシー列の極限として定義された。

https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E7%90%83%E9%9D%A2
リーマン球面

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E5%8C%96
コンパクト化
目次
1 概要
2 基本事項
3 アレクサンドロフの一点コンパクト化
746: 132人目の素数さん [sage] 2020/11/04(水) 18:33:32.43 ID:26WHSv4q(5/16) AAS
>>742
1および2については◆yH25M02vWFhPの読み間違い
すでに上記で指摘済み 理解できるまで読み返されたい

さて

>ノイマンのωにしろ、Zermeloのシングルトンによるωしろ、
>結局は抽象的な現代数学の思念の産物なのです

抽象的という言葉で何をいいたい?

ωの要素が具体化できない、という言い訳?

そもそもωの要素が何であれ、唯一であるなら
それがω−1とならざるを得ない、といっているのだが
理解できないほど数学的思考能力が欠如しているのか

そうならIUTなど到底理解できないからあきらめたほうがいい
747: 132人目の素数さん [sage] 2020/11/04(水) 18:34:52.45 ID:26WHSv4q(6/16) AAS
>>742
>直観的な理解は、極限順序数の”極限”から、
>自然数n→∞の極限として理解することだろうね
>つまり、シングルトンという性質(=濃度1)を持つ
>”極限”の順序数(としての集合)として、ωを理解することだ

極限という言葉で

「n+1が{n}というシングルトンなんだから、ωもシングルトンの筈だ」

というナイーブな”妄想”が正当化できるわけではない

極限の取り方を一切考えないことが「抽象的」だというなら
それは抽象的という言葉を完全に誤解している

・ω>n であるとき、そのときのみωからnへの∋降下列が存在する
・ωの前者ω−1は存在しない

上記2つの条件を満たすとして、

・ωがシングルトンだとすれば、ωの要素はω−1と解釈せざるを得ないから矛盾
・ωが自然数の無限集合なら、ωから任意の自然数nへの∋降下列が存在する

したがって、
「ωはシングルトンとしては存在し得ないが、自然数の無限集合としては存在し得る」
といえる

これが答え こんな簡単な推論もできないド素人の君に
IUTの理解なんか無理だからキレイサッパリあきらめろ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.048s