[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
690(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 10:17:46.02 ID:o4gNmK89(7/18) AAS
>>681
>最初の超限順序数であるωには、直前の順序数ωー1は存在しません
>一方、0以外のいかなる自然数nも、n−1が存在します
>nが超準自然数であっても同様です
スレチだが少しだけ
nが超準自然数であっても、∞−1は定義に依存するよ(下記)
つまりは、ωや∞は、人が数学的に定義したもの
一方、”標準的な自然数1,2,3,・・・”は、日常の人の生活に合うように定義したもの(今風なら”カノニカル”だな)
つまり、日常の人の生活に合わない自然数の定義は、(数学としては)あり得ても、それは(日常の数学としては)採用されないってことだ
その点、∞には、定義の自由度ある
また、順序数ω−1が存在しなくても(数学として定義不能でも)、なんにも数学的不都合はないよ(^^;
(参考)
https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0
拡大実数
拡張実数あるいはより精確にアフィン拡張実数 は、通常の実数に正の無限大 +∞ と負の無限大 ?∞ の二つを加えた体系を言う
https://ja.wikipedia.org/wiki/%E8%B6%85%E5%AE%9F%E6%95%B0
超実数
超実数または超準実数と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体
https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E7%9B%B4%E7%B7%9A
実数直線
位相的な性質
実数直線上には標準的に二つの互いに同値な方法で位相を入れることができる。一つは、実数直線が全順序集合であることを用いて順序位相を入れる方法。もう一つは先に述べた距離からくる内在的な距離位相を入れる方法である
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Real_projective_line.svg/225px-Real_projective_line.svg.png
実数直線にただひとつの無限遠点を加えてコンパクト化できる。
https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E7%90%83%E9%9D%A2
リーマン球面
https://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Stereographic_projection_in_3D.png/330px-Stereographic_projection_in_3D.png
リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。
691(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 10:32:27.35 ID:o4gNmK89(8/18) AAS
>>690
>∞−1は定義に依存するよ(下記)
スレチついでに
∞−1=∞という定義は可能だよ(下記)
でも、これを通常の数と同じに式変形して
∞−∞=1 とすることはできない!
つまりは、∞とかωとかは、
通常の計算とか式変形に乗らないってことでしょ!(^^
(参考)
https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0
拡大実数
拡張実数(かくちょうじっすう、英: extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 +∞ と負の無限大 -∞ の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではない
算術演算
実数全体 R における四則演算は、以下の規約により部分的に R まで拡張することができる。
略
式 "a + ∞" は "a + (+∞)" の意味でもあり "a - (-∞)" の意味でもある。また、式 "a - ∞" は "a - (+∞)" の意味でもあり "a + (-∞)" の意味でもある。
しかし、所謂不定形の式(英語版) ∞ - ∞, 0 × (±∞), ±∞?±∞ などはやはり意味を成さない(英語版)とするのが普通である。これらの規約は函数の無限大に関する極限についての法則をモデル化するものになっているが、確率論および測度論ではさらに、"0 × (±∞) = 0" を規約に追加することが多い(確定した 0 を掛けた 0 × (有限) の形の式の極限としての意味を持つことが多いため[2])。
また、数式 1/0 は +∞ とも -∞ とも定めることができない。これは連続函数 f(x) が f(x) → 0 を満たすとすると、これは逆数函数 1/f(x) が集合 {-∞, +∞} の任意の近傍に殆ど含まれる (eventually contained in) ことは意味するけれども、必ずしも 1/f(x) が -∞ か +∞ の何れか一方に収斂することを意味しないことによる(それでも、その絶対値 |1/f(x)| は +∞ へ近づく)。何となれば f(x) = 1/(sin(1/x)) を考えるとよい。
692(1): 特別支援学校教諭 [sage] 2020/11/01(日) 10:39:17.47 ID:Fdz+cM+e(13/23) AAS
>>690
>nが超準自然数であっても、∞−1は定義に依存するよ
ええ、>>681でもそう書いてます
超限順序数は、超準自然数ではありませんよ
「超」が同じだからあと同じとか粗雑ですよ
>順序数ω−1が存在しなくても(数学として定義不能でも)、
>なんにも数学的不都合はないよ
ωー1が存在しない=「可算無限シングルトン、は実現できない」 ですが
あなたの主張を完全に否定する点で最も重大な不都合ですよ
ま、あなたが自分の誤りを認めればいいだけで、大したことじゃないですね
正しい理解は、誤解を自覚することから始まります
「可算無限シングルトン」はまったく誤りだと自覚しましたか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s