[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
633
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/29(木) 21:32:53.73 ID:bN6CRDXK(3/3) AAS
>>628 追加

ご参考
http://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/yasuda.pdf
平成19年度(第29回)数学入門公開講座テキスト(京都大学数理解析研究所)
R = T 定理の仕組みとその応用 安田 正大

この講座では, Fermat 予想の証明のために Wiles, Taylor-Wiles が確立した R = T 定理に関する最近の発展と応用についてお話します.

ここで考えている反例 a^l + b^l = c^l において, 条件 a, b, c の最大公約数が 1 であり, さらに a + 1 が 4
の倍数で b が偶数であると仮定しても一般性を失わないのでそう仮定することにします. このとき楕円曲
線 Ea,b が存在するとすると, 非常におかしなことが起こるということに Frey は気づきました. 一般に有理
数体上の楕円曲線 E が与えられると, E の極小判別式と呼ばれる整数 ?E と E の導手と呼ばれる正の整
数 NE とが定まります. E の導手のほうが E の極小判別式の絶対値よりも小さいのですが, E = Ea,b に
関しては NE が ?E と比べて極端に小さくなります. ところが Szpiro の予想1という予想があって, E の
導手が E の極小判別式と比べて極端に小さくなることはないと思われているので Ea,b が存在するとする
とおかしなことになります.

Fermat 予想は, なぜ式 (1.1) に注目しているのかいまひとつはっきりせず, そういう意味で最近の数学
の立場からはそれほど重要な問題であると思われていないのですが, Szpiro 予想に出てくる ?E と NE と
はともに重要な量であり, そのためこの 2 つの量を比較する Szpiro 予想は重要な問題だと思われます.

16. R = T
Mazur は R を考えるアイデアを創始し, いろんなアプローチによる R の研究方法を提唱しました. その
うちの一つとして, 上の設定とは少し異なるモジュライ問題の下で, 写像 R → T を考え, それが同型である
ことを肥田の変形というものを用いて示しました. Wiles [W] と Taylor-Wiles [TW] は, 上に設定したよう
な状況の下での同型 R → T の証明の基本戦略を開発し, それを用いて特別な場合の谷山-志村予想を解決し
ました.
(引用終り)
以上
644
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/30(金) 23:10:42.06 ID:cxWP738x(4/4) AAS
>>633
>R = T 定理の仕組みとその応用 安田 正大

これ
安田 正大=下記の”(xxxi) Seidai Yasuda, Osaka University, Japan;”先生
ですね

http://www.kurims.kyoto-u.ac.jp/~bcollas/IUT/documents/RIMS-Lille%20-%20Promenade%20in%20Inter-Universal%20Teichm%C3%BCller%20Theory.pdf
PROMENADE IN INTER-UNIVERSAL TEICHMULLER THEORY - 復元
Online Seminar - Algebraic & Arithmetic Geometry
Laboratoire Paul Painleve - Universite de Lille, France

P23
LIST OF PARTICIPANTS (36).
(xxxi) Seidai Yasuda, Osaka University, Japan;

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244783/1/B76-02.pdf
星裕一の論文 宇宙際 Teichmuller 理論入門 PDF (2019)
P180
謝辞
本稿に対していくつもの有益な
指摘をくださった安田正大先生と査読者の方に感謝申し上げます.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.064s