[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
617(1): 132人目の素数さん [sage] 2020/10/26(月) 19:44:18.38 ID:wFrLWBBm(3/3) AAS
>>609
>スピロ予想の楕円関数は、モジュラーとして扱う。
楕円関数=楕円曲線 と誤解してます?
619(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/27(火) 07:50:03.05 ID:RmK3YVZ6(2/2) AAS
>>617
>楕円関数=楕円曲線
どぞ(^^
https://lemniscus.はてなぶろぐ/entry/20180525/1527257079
再帰の反復blog
2018-05-25
楕円積分、楕円関数、楕円曲線の関係についてのメモ
(抜粋)
2. 楕円積分、楕円関数、楕円曲線の関係
まず代数関数、リーマン面、代数曲線のいわゆる「三位一体」を考えて、それとの関係で楕円積分、楕円関数、楕円曲線を位置づけると次の図のようになる。
この図で特にリーマン面・代数曲線の種数が1の場合、?⇒楕円積分、?⇒楕円関数、?⇒楕円曲線となる。
しかし種数1の場合の特殊事情がある。
種数1でのヤコビ多様体(1次元ヤコビ多様体)はリーマン面になり、しかも元のリーマン面と同型になる。そして楕円関数もリーマン面上の有理型関数なので代数関数体になり、こちらも元の代数関数体と同型になる。(「三位一体」により、リーマン面の同型⇔代数関数体の同型が成り立つ)。
つまり種数1の場合、ヤコビ多様体(複素トーラス)、アーベル関数(楕円関数)の部分も「三位一体」の内側に組み込まれてしまう。
https://ja.wikipedia.org/wiki/%E6%A5%95%E5%86%86%E6%9B%B2%E7%B7%9A
楕円曲線
(抜粋)
楕円関数論を使い、複素数上で定義された楕円曲線はトーラスの複素射影平面(英語版)への埋め込みに対応することを示すことができる。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.041s