[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
609
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/25(日) 19:54:02.95 ID:eIdDsFH8(18/19) AAS
>>606
>>>q-parameters
>>モジュラー形式のq-展開 q = exp(2πiz) と同様か
>補足
>モジュラリティ定理 q=e^{2πiτ}
>「N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)」
>https://ja.wikipedia.org/wiki/%E8%B0%B7%E5%B1%B1%E2%80%93%E5%BF%97%E6%9D%91%E4%BA%88%E6%83%B3
>谷山-志村予想

なるほど
ガウス和からテータ関数、楕円テータ関数
モジュラー形式
そして、
モジュラリティ定理 q=e^{2πiτ}
「N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)」
に繋がってくるわけか

そして、IUT内では、スピロ予想の楕円関数は、
モジュラーとして扱う。当然のこととして
だから、q-parametersも、当然のように出てくるってことね

q-parametersって、
なんとなく、q=e^{2πiτ}のことだろうと思っていたが
ストーリーが見えなかったんだよね。q=e^{2πiτ}も明記されていないしね。もうIUTやるならデフォルト(常識)かよ(^^;
617
(1): 132人目の素数さん [sage] 2020/10/26(月) 19:44:18.38 ID:wFrLWBBm(3/3) AAS
>>609
>スピロ予想の楕円関数は、モジュラーとして扱う。

楕円関数=楕円曲線 と誤解してます?
639
(2): 132人目の素数さん [sage] 2020/10/30(金) 19:53:06.70 ID:iuPqYV+w(3/5) AAS
>>636
>複素数の楕円曲線をパラメーター化し、複素トーラスとの同等性を確立できます
まったく理解できてないでしょ

だから、>>609
>スピロ予想の楕円関数は、モジュラーとして扱う。
なって🐎🦌な間違い発言するんだよ

任意の楕円曲線が任意の楕円関数と一対一対応するとか
わけもわからずウソ800並べるなって
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.046s