[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
573
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/21(水) 07:43:22.01 ID:edwEsTDy(1/2) AAS
>>571-572
意味わからん
・二つの例を挙げよう
 1)谷山志村予想の解決、2)ペレルマンによるポアンカレ予想の解決
・この二つの例を理解するのに、原論文を読む必要は、必ずしもないと思う。実際、プロ数学者であっても、その道の専門家以外は、原論文を読む人は少ないだろうし、この二つとも原論文を読んで理解したという数学者も寡少だろう
・と、同様に、普通の人間が、IUTの原論文を、その定義から、読む必要はないと思うよ。下記の程度を理解していれば、十分だ。が、いまIUTにはそういう解説がない。そのうちに出てくる。いま、進行形だよ(^^

https://ja.wikipedia.org/wiki/%E8%B0%B7%E5%B1%B1%E2%80%93%E5%BF%97%E6%9D%91%E4%BA%88%E6%83%B3
谷山?志村予想
谷山・志村予想は、「すべての有理数体上に定義された楕円曲線はモジュラーである」という主張であり、アンドリュー・ワイルズとその弟子クリストフ・ブロイル、ブライアン・コンラッド、フレッド・ダイアモンド、リチャード・テイラーらによって証明された
今日ではモジュラー性定理またはモジュラリティ定理 (modularity theorem) と呼ばれ、数論における一つの帰結と考えられている。ワイルズは半安定楕円曲線における谷山・志村予想を証明することで、フェルマーの最終定理も証明した
モジュラリティ定理は、ロバート・ラングランズによるより一般的な予想の特別な場合でもある。ラングランズ・プログラムは、保型形式、あるいは保型表現(適切なモジュラ形式の一般化)を、例えば数体上の任意の楕円曲線のような、より一般的な数論的代数幾何学の対象へ関連付けようとする。拡張された予想のうち、ほとんどのケースは未だ証明されていないが、Freitas, Le Hung & Siksek (2015) が実二次体上定義された楕円曲線がモジュラーであることを証明した。

https://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%83%B3%E3%82%AB%E3%83%AC%E4%BA%88%E6%83%B3
(3次元)ポアンカレ予想(ポアンカレよそう、Poincare conjecture)とは、数学の位相幾何学における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は
単連結な3次元閉多様体は3次元球面 S3 に同相である
というものである[1][2]。現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。
目次
3 幾何化予想とペレルマン
575: 132人目の素数さん [sage] 2020/10/21(水) 19:04:35.18 ID:X1WgR8vT(2/2) AAS
>>573
>…理解するのに、原論文を読む必要は、必ずしもないと思う。

そんな間違った思いに固執して、数学書の定義すら読まず
式だけ読む「馬鹿読み」してるから、数学がちっとも理解できないw

>下記の程度を理解していれば、十分だ。

この程度の文章じゃ定義を知らぬ馬鹿の君には全く理解できない

>(谷山・志村予想)
>「すべての有理数体上に定義された楕円曲線はモジュラーである」

君、楕円曲線の定義知らんだろ?
楕円曲線とは楕円のことだと馬鹿読みしてるだろw
全然違うぞwww

モジュラーも定義すら全然知らんだろ
モジュラージャックと全然関係ないぞwww

>(ポアンカレ予想)
>「単連結な3次元閉多様体は3次元球面 S3 に同相である」

「単連結」「閉多様体」「同相」の定義も全く知るまいが
定義を知ったところで、なぜこの文章が正しいのか、
決して理解できまいwww

だから云ってるだろう、怠慢なド素人の馬鹿の貴様には数学など到底無理だと
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.053s