[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
57(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/28(日) 17:20:05.27 ID:bfBvt+85(3/6) AAS
参考
https://waseda.pure.elsevier.com/ja/publications/bers-embedding-of-the-teichm%C3%BCller-space-of-a-once-punctured-torus-2
https://www.ams.org/journals/ecgd/2004-08-05/S1088-4173-04-00108-0/home.html
https://www.ams.org/journals/ecgd/2004-08-05/S1088-4173-04-00108-0/S1088-4173-04-00108-0.pdf
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 8, Pages 115?142 (June 8, 2004)
S 1088-4173(04)00108-0
BERS EMBEDDING OF THE TEICHMULLER SPACE ¨
OF A ONCE-PUNCTURED TORUS
YOHEI KOMORI AND TOSHIYUKI SUGAWA
Abstract. In this note, we present a method of computing monodromies of
projective structures on a once-punctured torus. This leads to an algorithm
numerically visualizing the shape of the Bers embedding of a one-dimensional
Teichm¨uller space. As a by-product, the value of the accessory parameter of
a four-times punctured sphere will be calculated in a numerical way as well
as the generators of a Fuchsian group uniformizing it. Finally, we observe the
relation between the Schwarzian differential equation and Heun’s differential
equation in this special case.
http://arimoto.lolipop.jp/video_lectures/2015.1.16.0900.Tao.pdf
Introduction to Teichm¨uller Spaces
Jing Tao
Notes by Serena Yuan
https://www.acadsci.fi/mathematica/Vol24/parkkone.pdf
Annales Academia Scientiarum Fennica
Mathematica
Volumen 24, 1999, 305?342
THE OUTSIDE OF THE TEICHMULLER SPACE OF ¨
PUNCTURED TORI IN MASKIT’S EMBEDDING
Jouni Parkkonen
Universityof Jyv¨askyl¨a, Department of Mathematics
つづく
36(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/24(水) 23:19:10.61 ID:b5EBywaq(1/4) AAS
メモ
Inter-universal geometry と ABC予想 (応援スレ) 48
2chスレ:math
61 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/18(木) 17:17:22.36 ID:LPUPFt8f [2/4]
>>57 補足
https://en.wikipedia.org/wiki/Szpiro%27s_conjecture
Szpiro's conjecture
Modified Szpiro conjecture
The modified Szpiro conjecture states that: given ε > 0,
there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm),
we have
max{|c_4|^3 , |c_6|^2 } =< C( ε )・ f^{6+ε}
https://en.wikipedia.org/wiki/Tate%27s_algorithm
Tate's algorithm
In the theory of elliptic curves, Tate's algorithm takes as input an integral model of an elliptic curve E over Q }Q , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index
cp=[E(Q p):E^0(Q p)],
where E^0(Q p) is the group of Q p}Q p-points whose reduction mod p is a non-singular point.
Also, the algorithm determines whether or not the given integral model is minimal at p, and, if not, returns an integral model with integral coefficients for which the valuation at p of the discriminant is minimal.
Tate's algorithm also gives the structure of the singular fibers given by the Kodaira symbol or Neron symbol, for which, see elliptic surfaces: in turn this determines the exponent fp of the conductor E.
Tate's algorithm can be greatly simplified if the characteristic of the residue class field is not 2 or 3; in this case the type and c and f can be read off from the valuations of j and Δ (defined below).
Tate's algorithm was introduced by John Tate (1975) as an improvement of the description of the Neron model of an elliptic curve by Neron (1964).
つづく
58: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/28(日) 17:20:30.55 ID:bfBvt+85(4/6) AAS
>>57
つづき
http://www.maths.gla.ac.uk/~mbourque/papers/2dim.pdf
TOY TEICHMULLER SPACES OF REAL DIMENSION 2:
THE PENTAGON AND THE PUNCTURED TRIANGLE
YUDONG CHEN, ROMAN CHERNOV, MARCO FLORES, MAXIME FORTIER BOURQUE,
SEEWOO LEE, AND BOWEN YANG
ABSTRACT. We study two 2-dimensional Teichmuller spaces of surfaces with
boundary and marked points, namely, the pentagon and the punctured triangle.
We show that their geometry is quite different from Teichmuller spaces of closed
surfaces. Indeed, both spaces are exhausted by regular convex geodesic polygons
with a fixed number of sides, and their geodesics diverge at most linearly.
https://en.wikipedia.org/wiki/Orbifold
Orbifold
http://webcache.googleusercontent.com/search?q=cache:N68OPG3WsG8J:pantodon.shinshu-u.ac.jp/topology/literature/orbifold.html+&cd=1&hl=ja&ct=clnk&gl=jp
Orbifold のトポロジーと幾何学 pantodon.shinshu-u.ac.jp ? topology ? literature ?
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s