[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
40(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/25(木) 07:22:39.99 ID:odZewMPY(1) AAS
下記 (2015-02)は、目を通しておくと良いと思う
http://www.kurims.kyoto-u.ac.jp/~motizuki/travel-japanese.html
望月 出張・講演
http://www.kurims.kyoto-u.ac.jp/~motizuki/Uchuusai%20Taihimyuuraa%20riron%20he%20no%20izanai%20(2015-02).pdf
宇宙際タイヒミューラー理論への誘(いざな)い (2015-02) (京都大学数理解析研究所 2015年02月)
P4 辺りに q^(j^2)の話が出てくる
41(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/26(金) 06:45:35.87 ID:zl2qUDG1(1/4) AAS
>>40
"Hodge Arakelov 基本定理 ガウス積分"
https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%83%E3%82%B8%E3%83%BB%E3%82%A2%E3%83%A9%E3%82%B1%E3%83%AD%E3%83%95%E7%90%86%E8%AB%96
ホッジ・アラケロフ理論
楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。ホッジ・アラケロフ理論は、 Mochizuki (1999) で導入された。
望月の主要な結果であるホッジ・アラケロフ理論の比較定理は、(大まかには)標数 0 の滑らかな楕円曲線の普遍拡大上の次数が d 未満の多項式の空間は、自然に d-捩れ点上の函数の d^2-次元空間に(制限によって)同型となるという定理である。
ド・ラームコホモロジーを複素多様体の特異コホモロジーや、p-進多様体のエタール・コホモロジーに関連付けるコホモロジー論の比較定理のアラケロフ理論の類似物である。
Mochizuki (1999) と Mochizuki (2002a)で、彼は数論的小平・スペンサー写像やガウス・マーニン接続(英語版)(Gauss-Manin connection)が、ヴォイタ予想やABC予想などに重要なヒントを与えるのではないかと指摘している。
Mochizuki, Shinichi (2002a), “A survey of the Hodge-Arakelov theory of elliptic curves. I”, in Fried, Michael D.; Ihara, Yasutaka, Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), Proc. Sympos. Pure Math., 70, Providence, R.I.: American Mathematical Society, pp. 533?569, ISBN 978-0-8218-2036-0, MR1935421
http://www.kurims.kyoto-u.ac.jp/~motizuki/A%20Survey%20of%20the%20Hodge-Arakelov%20Theory%20of%20Elliptic%20Curves%20I.pdf
A Survey of the
Hodge-Arakelov Theory of Elliptic Curves I
Shinichi Mochizuki
October 2000
§1.5. Future Directions
§1.5.1 Gaussian Poles and Diophantine Applications
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s