[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
30(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/23(火) 00:26:30.71 ID:nKssTr8/(4/5) AAS
”「良い素数/悪い素数」(good prime/bad prime)”
http://www.comp.tmu.ac.jp/s-yokoyama/lectures/2015-2018/files/2014Yamagata.pdf
山形大学理学部数理科学科 2014 年度後期「数理情報特選 F/数理科学特別講義 E」講義資料 1
計算する立場からの楕円曲線論入門
The arithmetic of elliptic curves from a viewpoint of computation
横山 俊一1(Shun’ichi Yokoyama)
九州大学大学院 数理学研究院 / JST CREST
P6
特異点は 2 種類存在する. 一つは y
2 = x3 のように尖った部分に現れるもので, これをカスプ(cusp)
と呼ぶ. もう一つは y2 = x3 + x2 のように自己交差(この場合原点で交差する)を持つもので, こ
れをノード(node)と呼ぶ. ?(E) = 0 の時, 特異点がどちらのタイプであるかを判定する規準が存
在する.
命題 2.8. ?(E) = 0(特異点を持つ)と仮定する. この時, 特異点がカスプ型であるための必要十分
条件は c4 = 0 である. また, 特異点がノード型であるための必要十分条件は c4≠ 0 である.
Ep はいつも楕円曲線になる(i.e. ?(Ep)≠ 0)とは限らない. 正確には, p が判別式 ?(E) を割り
切るような素数を選んでしまうと ?(Ep) = 0 となる. そこで, 還元しても楕円曲線であり続ける場
合, これを “良い還元” と呼ぶ事にしよう.
つづく
31: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/23(火) 00:26:46.40 ID:nKssTr8/(5/5) AAS
>>30
つづき
定義 2.33. Ep が Fp 上の楕円曲線となる(i.e. ?(Ep) ?= 0)時, E は p で良い還元を持つ(has good
reduction at p)と呼ぶ. 逆に Ep に特異点が出現し, Fp 上の楕円曲線でなくなる(i.e. ?(Ep) = 0)
時, E は p で悪い還元を持つ(has bad reduction at p)と呼ぶ.
補足 2.34. 上の状況で, それぞれの p を「良い素数/悪い素数」(good prime/bad prime)と呼ぶ事
もある. ?(E) の素因子のリストは, 悪い素数のリストに一致する.
更に, 悪い還元の時には Ep に特異点が出現するが, その特異点には 2 種類あった事を思い出そう
(命題 2.8 及びその直前の文脈. c4 が 0 か否かでノード型かカスプ型に分かれるのであった). その
ため, 悪い還元を更に 2 つに分類する.
定義 2.35. E が p で悪い還元を持つとする. Ep がノード型の特異点を持つ時, E は p で乗法的(半
安定)還元を持つ(has multiplicative (semistable) reduction at p)と呼ぶ. Ep がカスプ型の特異点
を持つ時, E は p で加法的(不安定)還元を持つ(has additive (unstable) reduction at p)と呼ぶ.
これを用いて導手を定義する. 判別式が「悪い素数のリスト」を与えていたのに対し, 導手は
「悪い素数のリスト+還元の様子」を与えており, しかも不変量となる.
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.587s*