[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
262(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/26(日) 20:16:25.02 ID:uQ4z/5zX(10/12) AAS
>>261
つづき
http://y-bontenはてなブログ/entry/2019/08/25/161911
y_bonten's blog
2019-08-25
有限加法族だがσ加法族でない例
集合Xの部分集合族Bが「補集合をとる操作」と「有限個(ゼロ個でもよい)の和集合をとる操作」について閉じているとき、BはX上の有限加法族であるという。
さらにBが「可算個の和集合をとる操作」についても閉じているとき、X上のσ加法族であるという。
σ加法族は有限加法族でもあるが、有限加法族だからといってσ加法族とは限らない。
https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E6%B8%AC%E5%BA%A6#:~:text=%E7%A2%BA%E7%8E%87%E8%AB%96%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E7%A2%BA%E7%8E%87%E6%B8%AC%E5%BA%A6,%E6%B8%AC%E5%BA%A6%E3%81%AE%E3%81%93%E3%81%A8%E3%81%A7%E3%81%82%E3%82%8B%E3%80%82
確率測度
確率論における確率測度(かくりつそくど、英: probability measure)とは、標本空間に事象となる完全加法族が与えられたとき、事象の確率を測る測度のことである。
一般の測度の公理(完全加法性など)に加えて、標本空間の測度は 1 であることが公理に加わる[3]。
つづく
263: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/26(日) 20:16:56.72 ID:uQ4z/5zX(11/12) AAS
>>262
つづき
https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E5%8A%A0%E6%B3%95%E6%97%8F
完全加法族
(抜粋)
完全加法族(かんぜんかほうぞく、英: completely additive class [of sets])、可算加法族(かさんかほうぞく、英: countably additive class [of sets])あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、英: σ-algebra [of subsets over a set])、σ-集合体(シグマしゅうごうたい、英: σ-field [of sets])[注 1]は、主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。
特に測度が定義される集合全体を集めた集合族は完全加法族になる。この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。
完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である[1]。
・集合 X 上の σ-集合代数の定義は「集合 X の部分集合からなる族 Σ であって、可算回の合併、交叉と補演算という集合演算について閉じていて、合併についても交叉についても単位元を持つようなもの」である。
・集合 X 上の完全加法族の定義は「X の部分集合の空でない族 Σ で、X 自身を含み、補集合を取る操作(補演算)および可算な合併に関して閉じているもの」である。
即ちこれは、有限加法族あるいは集合代数であって[注 2]、かつその演算を可算無限回まで含めて順序完備(英語版)化したものになっている。集合 X とその上の完全加法族 Σ との対 (X, Σ) は可測空間と呼ばれる集合体になる。
https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%99%E3%83%BC%E3%82%B0%E6%B8%AC%E5%BA%A6
ルベーグ測度
ルベーグ可測な集合全体は完全加法族を為す。
そうしてルベーグ可測集合 A に対するルベーグ測度 λ を λ(A) := λ*(A) で定義する。
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.060s