[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
261
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/26(日) 20:15:49.85 ID:uQ4z/5zX(9/12) AAS
>>260
つづき

ブール代数の表現論における集合体
ストーン表現
任意の有限ブール代数はある集合の冪として表現できる。
この冪集合はブール代数のアトムの集合で、ブール代数の各元はそれに属するアトムの集合(和がブール代数のその元になるもの)に対応付けられる。
この冪集合表現はもっと一般に任意の完備かつアトミックなブール代数に対しても構成できる。
完備アトミックでないブール代数の場合にも、冪集合の代わりに集合体を考えることによって冪集合表現の一般化を考えることができる。
そのためにやるべき事は、まず有限ブール代数のアトムをその超フィルターに対応付けて、アトムが有限ブール代数の元に属するのはその元がそのアトムに対応する超フィルターに含まれることと定める。
これは自身の超フィルターの集合をとり、ブール代数の各元をそれを含む超フィルターに対応付けることによって複体の集合を構成するというブール代数の構成法を導く。
この構成法は集合代数としてのブール代数の表現もきちんと誘導し、その表現はストーン表現として知られる。
これはブール代数のストーン表現論における基本であり、順序集合論におけるイデアルやフィルターに基づく(デデキント切断に類似した)完備化の例である。

https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%8A%A0%E6%B3%95%E7%9A%84%E6%B8%AC%E5%BA%A6
有限加法的測度
(抜粋)
有限加法的測度(ゆうげんかほうてきそくど、英: finitely additive measure)または容積(ようせき、英: content, 独: Inhalt)とは、測度と同様に与えられた集合の部分集合に対して 非負の拡張実数を割り当てる集合函数である。
代表的な有限加法的測度としてジョルダン測度がある。
完全加法族上の測度は「可算加法的」測度である(任意の完全加法族は有限加法族であり、任意の測度は有限加法的測度である)。
有限加法的測度は、ある条件下で一意的な測度への拡張が存在する(E.ホップの拡張定理)。

つづく
262
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/26(日) 20:16:25.02 ID:uQ4z/5zX(10/12) AAS
>>261
つづき

http://y-bontenはてなブログ/entry/2019/08/25/161911
y_bonten's blog
2019-08-25
有限加法族だがσ加法族でない例
集合Xの部分集合族Bが「補集合をとる操作」と「有限個(ゼロ個でもよい)の和集合をとる操作」について閉じているとき、BはX上の有限加法族であるという。
さらにBが「可算個の和集合をとる操作」についても閉じているとき、X上のσ加法族であるという。
σ加法族は有限加法族でもあるが、有限加法族だからといってσ加法族とは限らない。

https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E6%B8%AC%E5%BA%A6#:~:text=%E7%A2%BA%E7%8E%87%E8%AB%96%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E7%A2%BA%E7%8E%87%E6%B8%AC%E5%BA%A6,%E6%B8%AC%E5%BA%A6%E3%81%AE%E3%81%93%E3%81%A8%E3%81%A7%E3%81%82%E3%82%8B%E3%80%82
確率測度
確率論における確率測度(かくりつそくど、英: probability measure)とは、標本空間に事象となる完全加法族が与えられたとき、事象の確率を測る測度のことである。
一般の測度の公理(完全加法性など)に加えて、標本空間の測度は 1 であることが公理に加わる[3]。

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s