[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
16
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/21(日) 10:14:06.42 ID:W0WIc7wX(10/18) AAS
>>15
つづき

定理 1 (小平-Nirenberg-Spencer1958/p.910) M をコンパク
トな複素多様体とし,H2(ΘM)=0 と仮定する。このとき,
N 個の parameter t1,・・・,tN に依存したコンパクトな複素
多様体の族 {M(t1, ・・・ , tN )} が存在して,どんな M の微少変
形も {M(t1 ・・・tN )} のなかに同型なものがある。ただし,N
は複素ベクトル空間 H1(ΘM ) の次元,M(0, ・・・ , 0) = M。
∂M(t)/∂t は一次の幾何学的微分です。そして,H2(ΘM) =
0 は Taylor 級数で2次以上の項がないという条件に相当し,定
理 1 は,すべての変形 (幾何学的 Taylor 級数) が H1(ΘM )(一
次の微分) で決定されることを主張しています。
その後のあらゆる種類の変形理論を通じて,この形の定理
は,応用上もっとも重要です。
上の定理は,それらのすべての原形を与えている点で,歴史的にも,重要な意味を持って
います。

この理論は最近,Mordell-Weil 格子の理論 (塩田 1989-1997
なお発展中) の中で,より精密な形で再構成されました。ま
た,Mordell-Weil 格子の理論のひとつの応用として,E8 の
Weyl 群という非常に大きなガロア群 (位数 214 ・ 35 ・ 52 ・ 7) を
持つ代数方程式がすべて決定されています。このほか,多く
の素晴しい結果が得られていますが,この理論の基本的なと
ころでは,楕円曲面の理論 (小平 1963/p.1269) が用いられて
います。(楕円曲面については,浪川氏の解説を参照してくだ
さい。)

つづく
17
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/21(日) 10:14:29.59 ID:W0WIc7wX(11/18) AAS
>>16
つづき

3 写像の変形理論

正標数でも同様の理論を作り,埋め込みの写像 π : S →
M の変形を考えることで,応用が増えます。実際,森重文
(1979/1982) はまず,M が Fano 多様体 (P2 を高次元へ拡張
したもの) のとき,かってにとった曲線をもとに,正標数特
有の技巧 (Frobenius 写像) と正標数の写像の変形理論によっ
て,写像を変形し,曲線をついに折れるまで曲げて,標数 0
のときも含め有理曲線 P1 を構成しました。さらに,得られ
た有理曲線を,再び,写像の変形理論によって,次数のより
低い有理曲線に分解しました。これが,森理論の核心部分で
す。この応用として,森重文は Hartshorne 予想を解決しまし
た。森の方法は,有理曲線を構成する方法として多くの専門
家に応用され,今では,Bend and Break(曲げて折る) とい
う名前がついている程です。

4 剛性定理

変形理論というのは,変形が豊かに存在して始めて面白い
わけですが,逆に変形しても,全然変化しない多様体があり
ます。あるいは,もっと強く,多様な複素構造が許されない
ような(可微分) 多様体があります。
定理 4 K¨ahler 複素多様体が射影空間 Pn と位相同型ならば
複素多様体としても同型。
n が奇数の時は [小平-Hirzebruch1958/p.744] によって証明
され,n が偶数の時は,Yau により証明が完成されました
(1977)。

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.039s