[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
122
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 00:19:30.45 ID:vq8RyVMN(1/9) AAS
>>102
これ、「43 フェルマーの最終定理」
http://www7a.biglobe.ne.jp/~paco_poco/hakusouroku/pdf/43_fermat.pdf
中のポアンカレ予想の説明の話だが、もう少し正確に書くと

誤:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『3 次元空間において、破れた穴の空いていない複雑な形をした立体』、
「短連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』、
「3 次元球面 S^3に同相」とは『3 次元の球そのものである』ということである。
 ↓
正:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『3 次元以上の空間において、”破れて穴の空いて”いない(閉じた)局所3次元ユークリッド空間と見なせるような図形や空間(位相空間)』
「単連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』
「3 次元球面 S^3」とは『4次元ユークリッド空間中の4次元球体の境界を成す3次元の多様体』
「同相」とは、『2つの多様体x,yの間に同相写像が存在する』ということである。

かな(^^;

(参考)
https://ja.wikipedia.org/wiki/%E5%A4%9A%E6%A7%98%E4%BD%93
多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。

https://ja.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E5%85%83%E7%90%83%E9%9D%A2
三次元球面

四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。
通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。

つづく
123: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 00:20:49.16 ID:vq8RyVMN(2/9) AAS
>>122

つづき

(山田 修司 教授の”「3次元球面」ってどんな図形?”が分り易いよ(^^)
https://www.kyoto-su.ac.jp/project/st/st10_01.html
ポアンカレ予想から位相幾何学の世界に触れる?4次元空間に浮かぶ3次元球面?
理学部 数理科学科 山田 修司 教授 京都産業大
「3次元球面」ってどんな図形?

https://kotobank.jp/word/%E5%90%8C%E7%9B%B8-103820
コトバンク
同相
連続写像f:X→Y
f^-1も連続であるときfを同相写像(位相写像)といい,このようなfが存在するときXとYは同相(位相同型)であるという。【中岡 稔】。
(引用終り)
以上
125
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 07:27:02.01 ID:vq8RyVMN(3/9) AAS
>>122
脱線ついでに、3次元多様体は、下記ご参照
(日本語のページは、無い)

https://en.wikipedia.org/wiki/Category:3-manifolds
Category:3-manifolds
https://en.wikipedia.org/wiki/3-manifold
3-manifold
(抜粋)
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space.
A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer.
This is made more precise in the definition below.

Contents
1 Introduction
1.1 Definition
1.2 Mathematical theory of 3-manifolds
2 Important examples of 3-manifolds
2.1 Euclidean 3-space
2.2 3-sphere
2.3 Real projective 3-space
2.4 3-torus
2.5 Hyperbolic 3-space
2.6 Poincare dodecahedral space
2.7 Seifert?Weber space

3 Some important classes of 3-manifolds
3.1 Hyperbolic link complements
4 Some important structures on 3-manifolds
4.1 Contact geometry
4.2 Haken manifold

4.4 Heegaard splitting

5 Foundational results
5.1 Moise's theorem
5.2 Prime decomposition theorem
5.3 Kneser?Haken finiteness
5.4 Loop and Sphere theorems
5.5 Annulus and Torus theorems
5.6 JSJ decomposition
5.7 Scott core theorem

5.9 Waldhausen's theorems on topological rigidity
5.10 Waldhausen conjecture on Heegaard splittings
5.11 Smith conjecture

5.13 Thurston's hyperbolic Dehn surgery theorem and the Jorgensen?Thurston theorem
5.14 Thurston's hyperbolization theorem for Haken manifolds

5.17 Poincare conjecture
5.18 Thurston's geometrization conjecture
5.19 Virtually fibered conjecture and Virtually Haken conjecture
5.20 Simple loop conjecture
5.21 Surface subgroup conjecture
6 Important conjectures
6.1 Cabling conjecture
6.2 Lubotzky?Sarnak conjecture
126
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 07:28:25.44 ID:vq8RyVMN(4/9) AAS
>>124
ガハハ
残念でしたね、>>125嫁め!w(^^;
127
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 07:43:33.11 ID:vq8RyVMN(5/9) AAS
>>125
下記は、本一冊で、図も多く丁寧な解説ですね
http://tunnel-knot.略.jp/3-manifolds.pdf (URLが通らないので略)
20130503 電子版3 次元多様体入門 森元勘治

電子版 あとがき(ポアンカレ予想の解決)
21 世紀になったばかりの,2002 年頃,ポアンカレ予想が解かれたらしい,という噂が数学者の間を駆け巡りました。
私がポアンカレ予想を身近に感じたのは,大学院博士課程の学生であった 1986 年頃,イ
ギリスの二人の数学者がポアンカレ予想を解いたと言っているらしい,という知らせが入
り,そのプレプリント(正式論文になる前の原稿)が出回ったころでした。そこで,その当
時大阪大学におられた小林毅さんが中心となって,プレプリントの読み合わせが行われま
した。議論は,本書でも紹介したヒーガード分解を用いた証明であり,与えられた多様体の
ヒーガード分解を考え,基本群が自明な群であることを用いて,種数を落とし,最後に種数
0 の S3 になることを示すという手法でした。しかし,細かい議論において,どうしても追
求できないところがあり,どうしたものかと悩んでいる内に,世界の各所で(特にアメリカ
で),議論に不備があるということになり,そのまま立ち消えになってしまいました。また,
1989 年頃,フランスの数学会に出席した折,フランスの数学者が,ポアンカレ予想の解決に
ついて長時間の講演を行っていましたが,聴衆はあまり信憑性を感じていないようでした。
歴史をひもとくと,プリンストン大学において,パパキリヤコプーロスとその後を追いかけ
るハーケンが熾烈な競争を続け,その “証明” を巡って,厳しいやりとりがあったことは,あまりに有名な伝説となっています。
2006 年 8 月 22 日,スペイン・マドリッドの国際会議場で 4 年に 1 度の国際数学者会議が
開催され,開会式において,フィールズ賞の受賞者が紹介されました。私は,その会議場の
2 階奥の席でじっとその時を待っていました。司会者が,ペレルマンにフィールズ賞を授与
することを会場全体に告げました。しかし,ペレルマンは一向に現れません。そして,しば
らくした後,司会者から,「ペレルマンは受賞を辞退し,この会場には現れません」と告げら
れると,会場全体にどよめきともため息とも言えぬ空気が流れました。
(引用終り)
128
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 07:44:32.60 ID:vq8RyVMN(6/9) AAS
アホなド素人のカキコにつきあうより、
>>127>>125読むのが良いでしょうwww
137: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 21:00:56.95 ID:vq8RyVMN(7/9) AAS
素人が、必死のシッタカか?
笑えるよね
ガハハハwww(^^
139
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 21:21:14.77 ID:vq8RyVMN(8/9) AAS
>>131
追加
”導手”とは?

http://www.comp.tmu.ac.jp/s-yokoyama/lectures/2015-2018/files/2014Yamagata.pdf
山形大学理学部数理科学科 2014 年度後期「数理情報特選 F/数理科学特別講義 E」講義資料 1
計算する立場からの楕円曲線論入門
The arithmetic of elliptic curves from a viewpoint of computation
横山 俊一1(Shun’ichi Yokoyama)
九州大学大学院 数理学研究院 / JST CREST

定義 2.33. Ep が Fp 上の楕円曲線となる(i.e. Δ(Ep) ≠ 0)時, E は p で良い還元を持つ(has good
reduction at p)と呼ぶ. 逆に Ep に特異点が出現し, Fp 上の楕円曲線でなくなる(i.e. Δ(Ep) = 0)
時, E は p で悪い還元を持つ(has bad reduction at p)と呼ぶ.

補足 2.34. 上の状況で, それぞれの p を「良い素数/悪い素数」(good prime/bad prime)と呼ぶ事
もある. Δ(E) の素因子のリストは, 悪い素数のリストに一致する.
更に, 悪い還元の時には Ep に特異点が出現するが, その特異点には 2 種類あった事を思い出そう
(命題 2.8 及びその直前の文脈. c4 が 0 か否かでノード型かカスプ型に分かれるのであった). その
ため, 悪い還元を更に 2 つに分類する.

定義 2.35. E が p で悪い還元を持つとする. Ep がノード型の特異点を持つ時, E は p で乗法的(半
安定)還元を持つ(has multiplicative (semistable) reduction at p)と呼ぶ. Ep がカスプ型の特異点
を持つ時, E は p で加法的(不安定)還元を持つ(has additive (unstable) reduction at p)と呼ぶ.

これを用いて導手を定義する. 判別式が「悪い素数のリスト」を与えていたのに対し, 導手は「悪
い素数のリスト+還元の様子」を与えており, しかも不変量となる.

定義 2.36. E を Q 上の楕円曲線とする. この時
N(E) = Πp : prime p^fp(E)
を E の導手(conductor)と呼ぶ. E =〜 E′ なら N(E) = N(E′) である. fp(E) は次で定める:
・ E が p で良い還元を持つ時 fp(E) = 0,
・ E が p で乗法的還元を持つ時 fp(E) = 1,
・ E が p で加法的還元を持つ時 fp(E) = 2 + δp.
δp は depth of wild ramification と呼ばれる 0 以上の整数で, 特に p ≠ 2, 3 ならば δp = 0 である.
140: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/14(火) 21:22:00.30 ID:vq8RyVMN(9/9) AAS
>>138
ド素人が、必死のシッタカか??
笑えるよね
ガハハハwww(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s