[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
675(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 07:36:20.21 ID:o4gNmK89(1/18) AAS
>>672
>数学でお困りのようですね
全然
まったく
困ってません(^^
維新さん、あなたと徹底的に対立したことでは、全て私の勝利だった
例えば
・時枝:あなたは現代確率論が、全く理解できていない
・可算無限シングルトンの存在:あなたは、レーベンハイム-スコーレムが、理解できていない
そしていま
・IUT:あなたは数学界がIUTを認める方向に動いていることが理解できない。
∵ 日本及び日本人嫌いの性格から、望月を認められないんだね
(参考)
https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86
レーヴェンハイム?スコーレムの定理
可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す
676(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 07:45:43.70 ID:o4gNmK89(2/18) AAS
>>673
>知的レベルによる「ヒエラルキー」は厳然と存在しますが
しばしば、世間知らずの数学者がおちいる錯覚だね、それ(^^;
”世間の知的レベルが一次元で、数学の試験の点数(あるいは偏差値)で全順序構造になっている”と
だが、現実の世の中では、”知的レベル”は おそらく多次元だし
一般の数学者は、”金儲け”と”政治バトル能力”のレベルが低いと思うよ、きっと(これに、納得する大学教授多いのでは?(^^ )
(参考)
https://ja.wikipedia.org/wiki/%E5%85%A8%E9%A0%86%E5%BA%8F
全順序 - Wikipediaja
数学における全順序(ぜんじゅんじょ、英: total order)とは、集合での二項関係で、推移律、反対称律かつ完全律の全てを満たすもののことである。 単純順序
677(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 08:02:12.59 ID:o4gNmK89(3/18) AAS
>>674
>正当性の主張は
>論文を読み込んで、数学的なロジックをときほぐし
>自分で消化した上で、実施する必要があります
それって、証明と反証と同じだよね
そして、アンチIUTのあなた、全然実力伴ってないよねwww
>物理学科出身でも工学部出身でも文系出身でも高校卒業でも問題ありません
世の中は、数学だけで成立っているわけではない
この単純な事実をしばしば、数学者は理解できなくなる。数学界にどっぷり漬かりすぎるとね
工学は、当然数学だけではない。物理あり、化学ありだ
”数学的なロジック”だけに頼ると、とんでもない落とし穴にハマルことがある
(余談だが、Peter Woit氏の”Criticism of string theory”批判もこれ。数学的には綺麗だが、物理的な検証がないぞってね)
工学は、当然工学的な判断を下さなければならない
物理に対しても、化学に対しても、そして数学に対してさえね
”数学的なロジック”とは、別の判断をね(”理屈は合っているかもしれないが、使えない”みたいなね)
(参考)
https://en.wikipedia.org/wiki/Peter_Woit
Peter Woit
Criticism of string theory
He is critical of string theory on the grounds that it lacks testable predictions and is promoted with public money despite its failures so far,[1]
678(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 08:17:26.57 ID:o4gNmK89(4/18) AAS
私ら、ミーハーのヤジウマですから(>>629) (^^;
IUTを、米大統領選と同じように
楽しんでみています
いま、IUT陣営は世界にその勢力を広げつつあります(^^
686(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 09:56:10.21 ID:o4gNmK89(5/18) AAS
>>679
>まず、私は「維新さん」ではありません
>一介の教師にすぎません
なるほど
妄想+多重人格? 統合失調症?
あなたが、「維新さん」=おサルさん
でなければ (つまりは同一人物でなければ)
時枝(>>680)とか
"「可算無限シングルトン」のレーベンハイム-スコーレム"に
あなたのような反応はできないよね!
「横から拝見」だと?
スレも全く違うし、議論は何年にも渡っているよ!w
当事者以外には、あり得な〜い!www
>>682
>ヒエラルキー=全順序、と考えるのは誤解でしょう
まあ、確かに半順序もありかも(^^;
なお、数学的な議論からずれるが、ある数学の試験で、同点の二人を比較不能とするか、比較可能で同点とするか、これ哲学問題じゃね?(^^;
(参考)
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E9%9B%86%E5%90%88
順序集合
比較不能の場合を許容する順序集合を半順序集合(はんじゅんじょしゅうごう、英: partially ordered set, poset)という。
特に、半順序集合で全ての2元が比較可能であるものを全順序集合 (totally ordered set) という。
(引用終り)
あとのゴミレスは、スルーだwww
687: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 09:58:07.55 ID:o4gNmK89(6/18) AAS
>>686 リンク追加訂正
"「可算無限シングルトン」のレーベンハイム-スコーレム"に
↓
"「可算無限シングルトン」のレーベンハイム-スコーレム"(>>681)に
690(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 10:17:46.02 ID:o4gNmK89(7/18) AAS
>>681
>最初の超限順序数であるωには、直前の順序数ωー1は存在しません
>一方、0以外のいかなる自然数nも、n−1が存在します
>nが超準自然数であっても同様です
スレチだが少しだけ
nが超準自然数であっても、∞−1は定義に依存するよ(下記)
つまりは、ωや∞は、人が数学的に定義したもの
一方、”標準的な自然数1,2,3,・・・”は、日常の人の生活に合うように定義したもの(今風なら”カノニカル”だな)
つまり、日常の人の生活に合わない自然数の定義は、(数学としては)あり得ても、それは(日常の数学としては)採用されないってことだ
その点、∞には、定義の自由度ある
また、順序数ω−1が存在しなくても(数学として定義不能でも)、なんにも数学的不都合はないよ(^^;
(参考)
https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0
拡大実数
拡張実数あるいはより精確にアフィン拡張実数 は、通常の実数に正の無限大 +∞ と負の無限大 ?∞ の二つを加えた体系を言う
https://ja.wikipedia.org/wiki/%E8%B6%85%E5%AE%9F%E6%95%B0
超実数
超実数または超準実数と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体
https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E7%9B%B4%E7%B7%9A
実数直線
位相的な性質
実数直線上には標準的に二つの互いに同値な方法で位相を入れることができる。一つは、実数直線が全順序集合であることを用いて順序位相を入れる方法。もう一つは先に述べた距離からくる内在的な距離位相を入れる方法である
https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Real_projective_line.svg/225px-Real_projective_line.svg.png
実数直線にただひとつの無限遠点を加えてコンパクト化できる。
https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E7%90%83%E9%9D%A2
リーマン球面
https://upload.wikimedia.org/wikipedia/commons/thumb/8/85/Stereographic_projection_in_3D.png/330px-Stereographic_projection_in_3D.png
リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。
691(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 10:32:27.35 ID:o4gNmK89(8/18) AAS
>>690
>∞−1は定義に依存するよ(下記)
スレチついでに
∞−1=∞という定義は可能だよ(下記)
でも、これを通常の数と同じに式変形して
∞−∞=1 とすることはできない!
つまりは、∞とかωとかは、
通常の計算とか式変形に乗らないってことでしょ!(^^
(参考)
https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0
拡大実数
拡張実数(かくちょうじっすう、英: extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 +∞ と負の無限大 -∞ の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではない
算術演算
実数全体 R における四則演算は、以下の規約により部分的に R まで拡張することができる。
略
式 "a + ∞" は "a + (+∞)" の意味でもあり "a - (-∞)" の意味でもある。また、式 "a - ∞" は "a - (+∞)" の意味でもあり "a + (-∞)" の意味でもある。
しかし、所謂不定形の式(英語版) ∞ - ∞, 0 × (±∞), ±∞?±∞ などはやはり意味を成さない(英語版)とするのが普通である。これらの規約は函数の無限大に関する極限についての法則をモデル化するものになっているが、確率論および測度論ではさらに、"0 × (±∞) = 0" を規約に追加することが多い(確定した 0 を掛けた 0 × (有限) の形の式の極限としての意味を持つことが多いため[2])。
また、数式 1/0 は +∞ とも -∞ とも定めることができない。これは連続函数 f(x) が f(x) → 0 を満たすとすると、これは逆数函数 1/f(x) が集合 {-∞, +∞} の任意の近傍に殆ど含まれる (eventually contained in) ことは意味するけれども、必ずしも 1/f(x) が -∞ か +∞ の何れか一方に収斂することを意味しないことによる(それでも、その絶対値 |1/f(x)| は +∞ へ近づく)。何となれば f(x) = 1/(sin(1/x)) を考えるとよい。
694(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 12:31:18.77 ID:o4gNmK89(9/18) AAS
>>692
>ωー1が存在しない=「可算無限シングルトン、は実現できない」 ですが
(等号成立の)数学的な証明がないし
”ωー1が存在しない”としても
ωが存在するなら、それでシングルトンも可でしょw
ωに対応するシングルトンを考えて、それを最初の可算無限シングルトンとすれば良い!
それを、Singωとでもすれば良い!!w(^^
w+1に対応するシングルトンは、Singω+1となるだけの話だよね
なお、ご参考
<時枝関連>と<「可算無限シングルトン」>の関連スレは下記。では
記
1.
<時枝関連>
・現存スレでは下記辺りをどうぞ。過去スレにもかなりあるけど(それも辿れるが)、下記くらいで良いでしょう(^^
現代数学の系譜 カントル 超限集合論他 3
2chスレ:math
2.
<「可算無限シングルトン」>
・現存スレは無いが
現代数学の系譜 カントル 超限集合論
2chスレ:math (2019/10/05(土) )
695(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 12:32:33.82 ID:o4gNmK89(10/18) AAS
>>694 タイポ訂正
w+1に対応するシングルトンは、Singω+1となるだけの話だよね
↓
ω+1に対応するシングルトンは、Singω+1となるだけの話だよね
696(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 12:35:22.35 ID:o4gNmK89(11/18) AAS
>>679
>一介の教師にすぎません
ああ
たしか、哀れな素人氏が
「さる石は、小学生の塾で教えている」とか言っていたな
がんばれよ(^^
697: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 14:09:52.97 ID:o4gNmK89(12/18) AAS
>>695 追加訂正
w+1に対応するシングルトンは、Singω+1となるだけの話だよね
↓
ω+1に対応するシングルトンは、Singω+1となるだけの話だよね
↓
ω+1に対応するシングルトンは、Singω+1={Singω}となるだけの話だよね
かな
701(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 19:29:03.24 ID:o4gNmK89(13/18) AAS
>>698
スレチだが
>なぜなら 順序数xをシングルトンで実現する場合
>その唯一の要素が順序数x−1だからです
ここ、数学的に厳密な証明がない
単なる個人の一つの感想文にすぎない
702(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 19:36:08.22 ID:o4gNmK89(14/18) AAS
>>699-700
>私が「教師」であるのはこの板だけのことで、
なんだ
自白したのか?
妄想だったのか、謀ったのかは知らずw
>それにしても、上記の2件について、あなたはまだご自分の誤りを
>認められないようですね
そっくりお返しする
もっとも、さる石と、もう論争するメリットないがね
時枝については、いまどきの数学科生は、おサルの時代と違って、金融数学との関連で、確率論及び確率過程論の修得をしていると見る。大学教程の確率論及び確率過程論の修得していれば、時枝の不成立など一目ですからね
「可算無限シングルトン」も似たようなもので、こちらの勝利は確定しているので、論争する必要なしだ
706(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 22:02:34.58 ID:o4gNmK89(15/18) AAS
>>703
ほいよ
・自然数の構成法は、後者関数の選び方に任意性がある。しかし、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
・上記で、標準的なノイマン構成以外に、シングルトンによる自然数構成も可能
・自然数全体の集合N((特に順序数に関する文脈で)ギリシャ文字の ω )の存在は、無限公理から導かれるもの。後者関数の定義とは無関係(後者関数にシングルトンを選んだら云々はド素人)
(参考)
https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86
ペアノの公理
(抜粋)
存在と一意性
集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。 まず、後者関数を定義する; 任意の集合 a に対してその後者を suc(a) := a ∪ {a} と定義する。
N を自然数全体の集合といい、これは時々(特に順序数に関する文脈で)ギリシャ文字の ω と表記される。
この構成法はジョン・フォン・ノイマンによる[1] 。
これは可能なペアノシステムの構成法として唯一のものではない。
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
集合論において標準的となっている自然数の構成は以下の通りである。
(上記のノイマン構成法で略す)
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(注:これがシングルトンによる自然数構成)
つづく
707: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 22:03:27.47 ID:o4gNmK89(16/18) AAS
>>706
つづき
https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%85%AC%E7%90%86
無限公理(むげんこうり、英: axiom of infinity)とは公理的集合論におけるZF公理系を構成する公理の一つで、「無限集合の存在」を主張するものである。エルンスト・ツェルメロによって1908年に初めて提示された。
解釈と帰結
上記の手続きはペアノの公理における自然数の構成方法と同様である。ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合)
独立性
無限公理はZF公理系において独立した公理である。すなわちZF公理系の他の公理たちから導くことも反証することもできない。
(引用終り)
以上
711(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 23:18:44.86 ID:o4gNmK89(17/18) AAS
>>708-710
・無限公理の本質は、それを表現する式のテクニカルな話ではない。単に、後者関数を帰納的に繰返しただけでは、自然数の集合N(順序数ではω)の存在はすっきり言えないってことです
・無限公理の本質は、下記の極限順序数通り。ある後者関数を選ぶと、帰納的に自然数の元が構成できる。そして、無限公理で、極限順序数ω(それは自然数の集合Nでもある)の存在が導かれる
・その後、ωに後者関数を適用することで、”ω, S(ω), S(S(ω)), S(S(S(ω))), ......”(下記)と続くということです
・後者関数の選び方には、任意性があるが、「二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる」
・だから、シングルトンによる後者関数に目くじら立てるのは間違い。シングルトンによる後者関数であっても極限順序数は可能ですよ
∵シングルトンによる後者関数によって全ての自然数の元が尽くせるなら、それらの元を集めた無限集合たる自然数の集合Nが構成可能であって、それは極限順序数ωでもあるのです!
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数[1]を拡張させた概念である。
ω より小さな順序数(すなわち自然数)を有限順序数と呼び、ω 以上の(すなわち ω と等しいか ω より大きい)順序数を超限順序数と呼ぶ。
S(α) を α の後続者(successor of α)と呼ぶ。
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
つづく
712(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 23:19:06.74 ID:o4gNmK89(18/18) AAS
>>711
つづき
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。あるいは、順序数 λ が極限順序数であるための必要十分条件は「λ より小さい順序数が存在して、順序数 β が λ より小さい限り別の順序数 γ が存在して β < γ < λ とできることである」と言ってもよい。任意の順序数は、0 または後続順序数、さもなくば極限順序数である。
例えば、任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数(しぜんすう、英: natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。
(引用終り)
なお、これを下記のスレに転載しておきますよ
現代数学の系譜 カントル 超限集合論他 3
2chスレ:math
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.075s