[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
743(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 14:45:17.18 ID:lTaOluRt(1/3) AAS
>>742
> 3.要するに、ノイマンのωにしろ、Zermeloのシングルトンによるωしろ、結局は抽象的な現代数学の思念の産物なのです
> 4.それは、自然数(=ある前者があって その後者関数から作られる普通の順序数)とは、異なる性質を持って良い!
補足説明するよ
・例えば、コーシー列:有理数からなるコーシー列で実数、例えばπなどの超越数ができる
超越数は分数表示ができず、数の性質が”有理数→超越数”に変わっている
・例えば、ωはリーマン球面の北極点に例えることができる
複素数のガウス平面を丸めて、リーマン球面ができる
いわゆる一点コンパクト化(下記)。無限遠の点∞を付け加える。こうすると、理論的にすっきりするのです
点∞はある種の極限で、ガウス平面には存在しない。つまり、他の複素数とは、その性質を異にするのです
・Zermeloのシングルトンによるωも、ある種の一点コンパクト化
で、この種コンパクト化は後者関数の選び方にはよらない
・普通は、”自然数n→∞の極限”とか、”コンパクト化”は書かない。避ける
∵そうかくと、基礎論的にはまずいから。循環論法になるよ
つまり、基礎論として最初は空集合と公理のみからスタートする
その時点では”極限”も”コンパクト化”も言えない
けど、何らかの手段(例えばノイマンとか)で、全部自然数とか実数とか出来上がってからなら、一段高い立場からは言える。それは循環論法でないよね
(参考)
https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97
コーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。
目次
1 コーシー数列
1.1 実数におけるコーシー列
有限数列 (x1, x2, ..., xk) は xk = xk+1 = xk+2 = … と延長することにより、コーシー列と見なせる。
実数はコーシー列の極限として定義された。
https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E7%90%83%E9%9D%A2
リーマン球面
https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E5%8C%96
コンパクト化
目次
1 概要
2 基本事項
3 アレクサンドロフの一点コンパクト化
744(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 15:06:33.11 ID:lTaOluRt(2/3) AAS
(>>718より、さらに補足)
1.0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............
2.ここに、 S(α) は、後者関数である
3.0, 1, 2, 3, ............の部分は、有限順序数(自然数)が通常の順序で並んでいて、後者関数で表現できるのだ
つまり S(n) :=S(n-1) だ。ωのみは、後者関数で表現できない
4.じゃ、ωとは何者よ? 一つの理解は、S(n)のn→∞の極限として理解すること。もう一つは、ωをある種の”コンパクト化”として理解すること
いずれも、可能な限り後者関数の性質を受け継ぐものとしてね。それは、コーシ列とか、リーマン球面の北極点に同じだよ
このとき、ノイマンの後者関数なら、集合としてのω=N(自然数全体からなる可算無限集合)であり
Zermeloによるシングルトンの後者関数なら、シングルトンでの 0, 1, 2, 3, ............, ω, S(ω)の、ωの位置を占めるものになるよね
それ即ち、順序数ωを意味するシングルトンなり!
5.こう解釈して何が悪い? 抽象化された現代数学での 有理数以上における 数学的概念の対象って、みんなそんなものでしょ?
これ、(有理)コーシー列による超越数の抽象的な定義に、同じだよね
(参考)
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
順序数
順序数の大小関係
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............,
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく
(引用終り)
以上
751(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/04(水) 18:57:28.52 ID:lTaOluRt(3/3) AAS
>>750
>矛盾を導く つまり最低最悪
矛盾導いてないよ
もともと、ωにはω-1つまり直前の前者は存在しない
∵ ωは極限順序数(下記) (だから、”ω-1”を持ち出すことが、最初から間違っている)
そして、濃度が1なる集合ωが存在すると考えるだけのこと
それは、
集合列 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............で、
(ここに、ω以外は、全て直前の前者を要素とするシングルトンであり、ωのみ直前の前者を持たない)
このωは、集合として濃度1と考えるってこと
濃度1と考えるってことと、ω-1が存在しないこととは、なんら数学的な矛盾はない
集合の濃度1だから、シングルトンと呼ぶってことだけさ
(参考)
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s