[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
587: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/24(土) 09:05:25.63 ID:i6I9Q5ne(1/5) AAS
>>586
ほいよ
教えてくれた人
ありがとう!(^^

純粋・応用数学(含むガロア理論)5
2chスレ:math
95 名前:132人目の素数さん[sage] 投稿日:2020/10/24(土) 05:20:14.66 ID:qKLszrb1 [1/2]
元ネタ
2chスレ:math
数学王、の前振りがわざとらしかったな
588: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/24(土) 19:00:33.22 ID:i6I9Q5ne(2/5) AAS
メモ貼る
https://ja.wikipedia.org/wiki/%E5%B0%8E%E6%89%8B
導手
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。
正確な語句に改訳できる方を求めています。
(抜粋)
代数的整数論で、局所体や大域体の有限次アーベル拡大の導手(conductor)は、拡大の分岐を定量的に測るものである。導手の定義はアルティン写像に関連がある。

局所導手
拡大の導手は分岐を測る。定量的には、拡大が不分岐であることと、導手が 0 であることとは同値であり[3]、(拡大が)おとなしい分岐(英語版)(tamely ramified)であることと、導手が 1 であることとは同値である[4]。さらに詳しくは、導手は高次分岐群(英語版)(higher ramification group)の非自明性を測ることができる


基礎体を有理数体とすると、クロネッカー・ウェーバーの定理は、代数体 K が Q のアーベル拡大であることと、ある円分体 Q(ζn) の部分体であることが同値であることを言っている[15]。従って、K の導手はそのようなものの中で最も小さな n である。

局所導手や分岐との関係
大域導手は局所導手の積である。[17]

結局、有限素点が L/K で分岐していることと、それが f(L/K) を割ることは同値である。[18] 無限素点 v は導手の中にあらわれることと、v が実素点で、L で複素素点となることとが同値である。
589: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/24(土) 20:32:01.25 ID:i6I9Q5ne(3/5) AAS
<転載>
純粋・応用数学(含むガロア理論)5
2chスレ:math
http://www.kurims.kyoto-u.ac.jp/~bcollas/IUT/documents/RIMS-Lille%20-%20Promenade%20in%20Inter-Universal%20Teichm%C3%BCller%20Theory.pdf
PROMENADE IN INTER-UNIVERSAL TEICHMULLER THEORY - 復元

のP3で、Fig. 1. IUT, Topics & References as potential entry points.
があるよね
その図で、一番外のリングで灰色部分が、[Alien]:
http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF

実際、ちょっと読んでみたら
IUT本論文よりは、はるかに読みやすいんだ(^^;

(もっとも、自分にはまだまだ難しいけどね)

なので、もう少し読んでみよう
そう思っている
590
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/24(土) 20:34:10.29 ID:i6I9Q5ne(4/5) AAS
純粋・応用数学(含むガロア理論)5
2chスレ:math
>>149 補足

http://www.kurims.kyoto-u.ac.jp/~bcollas/IUT/documents/RIMS-Lille%20-%20Promenade%20in%20Inter-Universal%20Teichm%C3%BCller%20Theory.pdf
PROMENADE IN INTER-UNIVERSAL TEICHMULLER THEORY - 復元
のP3で、Fig. 1. IUT, Topics & References as potential entry points.
があるよね
その図で、一番外のリングで灰色部分が、[Alien]:
http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF”

補足します(^^
・Fig. 1(IUT曼荼羅)で、同心円 一番外が[Alien]、以下中心に向けて、IUT1〜4があり、IUT4が一番内側
・外周は、ほぼ6等分され、頂点から右回りの各ゾーンで、1)IUT Geometry、2)Diophantine [GenEII]、3)Anabelian [AbTopIII]、4)Geometrical [IUTChII]、5)Category [Fr]-[An]、6)Meta-Abelian Theta [EtTh]
 と記されている
・そして、各ゾーンで白抜きで、プランクの箇所がところどころある。この部分、”無し”ってこと。
 例えば、IUT4が関連するのは2つのゾーン、IUT GeometryゾーンとDiophantineゾーンのみ
・で、一番外が[Alien]のさらに外が、従来の数学界ってことなのでしょうね〜w
・”※ We have also found the synthetic and selfcontent [Yam17] to be particularly helpful as a bridge between [Alien] and the “canon”.”
 とあるから、 [Alien] 読むのが良さそうってこと

(参考)
https://ja.wikipedia.org/wiki/%E6%9B%BC%E8%8D%BC%E7%BE%85
曼荼羅
密教の経典にもとづき、主尊を中心に諸仏諸尊の集会(しゅうえ)する楼閣を模式的に示した図像[1]。ほとんどの密教経典は曼荼羅を説き、その思想を曼荼羅の構造によって表す[2]ので、その種類は数百にのぼる。古代インドに起源をもち、中央アジア、日本、中国、朝鮮半島、東南アジア諸国などへ伝わった。
日本では、密教の経典・儀軌に基づかない、神仏が集会(しゅうえ)する図像や文字列にも、曼荼羅の呼称を冠する派生的な用法が生じた。
591
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/24(土) 22:10:23.94 ID:i6I9Q5ne(5/5) AAS
純粋・応用数学(含むガロア理論)5
2chスレ:math
162 名前:132人目の素数さん[sage] 投稿日:2020/10/24(土) 20:50:21.67 ID:qKLszrb1 [26/26]
>>156
>The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory.

IUTで度々、ガウス積分が出て来て、なんか唐突だな、と感じてたけど
たまたまウィキペディアのガウス和のページを見て
そこに以下の式が書いてあったので「ああ、これか!」と気づいたんだよね
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
ガウス和の別の表現は、次のようなものである:
Σr e^(2πir^2/p)
二次ガウス和は、テータ関数の理論と密接に関連している。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

(参考)
https://ja.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E5%92%8C
ガウス和

ガウス和(ガウスわ、英: Gauss sum)あるいはガウスの和とは、ある特別な1の冪根の有限和である。

ガウス和はガンマ関数の有限体における類似物である。

このような和は数論において至る所で現れる。例えば、あるディリクレ指標 χ に対して L(s, χ) と L(1 ? s, χ ̄) を関連付ける方程式が
G(χ) /|G(χ)|
を含むような、ディリクレのL関数の関数等式に現れる。ただし χ ̄ は χ の複素共役である。

歴史
このガウス和の別の表現は、次のようなものである:
Σ{r} e^{2πir^2}/p}
二次ガウス和は、テータ関数の理論と密接に関連している。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.055s