[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
625
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/29(木) 10:46:48.69 ID:cmDP4Gws(1/5) AAS
>>620 補足

もう一点補足しよう
下記、hiroyukikojima ”「同じと見なす」ことの素晴らしさと難しさ”
”数学の専門の言葉では「同一視」という”
下記では、イデアルが例示されているな

(参考)
https://hiroyukikojima.はてなぶろぐ/entry/20140606/1402035822
hiroyukikojima’s blog 20140606
「同じと見なす」ことの素晴らしさと難しさ
(抜粋)
『数学は世界をこう見る 数と空間への現代的なアプローチ』PHP新書
この本には、複数のコンセプトが込められているのだけど、その中で非常に大きいのが、「同じと見なす」という数学固有のテクニックをこれでもか、というぐらいに徹底的に解説することだ。「同じと見なす」ということを、数学の専門の言葉では「同一視」という

高校までとはうって変わって、数学科に進学すると、この「同じと見なす」の嵐になる
19世紀にカントールとデデキントが集合論を打ち立ててから、数は「発見されるもの」ではなく「同一視を駆使して創造されるもの」となった。だから、数を扱う分野は、必ず、「同一視」の洗礼を受けることになるのである

(あとがきにも書いたことだが)、数学者の黒川信重先生と共著を作るのに対談している最中、「数学では、この『同じと見なす』という操作がすごく大事で、本質的だよね」という意見が一致したことにあった。そして、「そんなに大事なことなのに、『同じと見なす』を主軸に据えて、きちんと解説した本ってないよね」ということも同じ見解だった
それで、「同じと見なす」ことの徹底解説にトライしたのが本書であった

具体的には、素数周期で数を同一視することで得られる有限体、中身の詰まった単体の'へり'を0と同一視することで図形を分類するホモロジー群、「2つの多項式の差が特定の多項式の倍数になる場合は同じと見なす」ことで得られる剰余体(例えば、ルート2や虚数単位はこの方法で'創造'される)を解説した
全体を貫いているのは、イデアルというアイテムだ。イデアルは、19世紀のクンマーがフェルマーの最終定理を解こうとして端緒を掴み、それをデデキントが集合論を使って実体化させ、さらに、ヒルベルトが代数幾何に応用してその威力を知らしめた。たぶん、20世紀の数学の中で、最も重要な数学概念の一つであろう
(引用終り)
以上
626
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/29(木) 11:04:59.38 ID:cmDP4Gws(2/5) AAS
>>625 追加

違いを探せば、違いはある。でも、同一視する。それが、高等数学の流儀

デデキント切断とコーシー列と。どちらも、実数を構成できる
あるときは同一視し、あるときは差を強調する

虚数単位 ”i”。 普通はi=√-1
でも、”実数体 R 上の多項式環 R[X] に対して、X2 + 1 で割った剰余環 R[X]/(X2 + 1) は、複素数体 C と体同型”(下記)
行列表現もあるよ

ここらが、適切に自由自在に、同一視と、差を強調するときと、
その使い分けができるのが良いのだろうね

(参考)
https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E5%88%87%E6%96%AD
デデキント切断
リヒャルト・デデキントが考案した数学的な手続きで、実数論の基礎付けに用いられる。

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97
コーシー列
コーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。
実数論において最も基本となる重要な概念の一つである。

https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0
実数

3 実数の様々な構成
3.1 コーシー列を用いた構成
3.2 デデキント切断による構成
3.3 超準解析に基づく構成

https://ja.wikipedia.org/wiki/%E8%99%9A%E6%95%B0%E5%8D%98%E4%BD%8D
虚数単位
1 定義
2 負の数の平方根を用いない表現
2.1 ハミルトンの定義
2.2 多項式環からの構成
2.3 行列表現

ハミルトンの定義
詳細は「複素数#実数の対として」を参照

多項式環からの構成
実数体 R 上の多項式環 R[X] に対して、X2 + 1 で割った剰余環 R[X]/(X2 + 1) は、複素数体 C と体同型である。
この対応で、虚数単位は同値類 [X] である。

行列表現
詳細は「複素数#行列表現」を参照
627: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/29(木) 11:28:57.56 ID:cmDP4Gws(3/5) AAS
>>619 補足
>https://lemniscus.はてなぶろぐ/entry/20180525/1527257079
>再帰の反復blog 2018-05-25
>楕円積分、楕円関数、楕円曲線の関係についてのメモ
> 2. 楕円積分、楕円関数、楕円曲線の関係
>まず代数関数、リーマン面、代数曲線のいわゆる「三位一体」を考えて、それとの関係で楕円積分、楕円関数、楕円曲線を位置づけると次の図のようになる。

「三位一体」とは? 父と子と聖霊と
キリスト教の用語らしい(下記ご参照)

で、楕円積分、楕円関数、楕円曲線
この3つ、確かに違いはある!
が、ある見方をすれば、数学的に同一視できる!!

そういうことを、再帰の反復blogは言いたいのでは?
細かい点は
原文を読んでたもれ(^^

(参考)
https://dictionary.goo.ne.jp/word/%E4%B8%89%E4%BD%8D%E4%B8%80%E4%BD%93/
goo 辞書
三位一体の解説 - 学研 四字熟語辞典
さんみいったい【三位一体】
キリスト教の用語で、父である神と、神の子であるイエス・キリストと、聖霊の三つは一体のものであり、この三者は、唯一の神がそれぞれの姿で現れたものだという説。転じて、別々の三つが、一つのものとして分かちがたく結びついていることや、三者が一致協力すること。

https://ja.wikipedia.org/wiki/%E4%B8%89%E4%BD%8D%E4%B8%80%E4%BD%93
三位一体
はニカイア・コンスタンティノポリス信条において
1.父
2.子
3.聖霊
の三つが神であり「一体(=唯一神・唯一の神)」であるとする教え。

https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%AA%E3%83%8B%E3%83%86%E3%82%A3
トリニティ (trinity) は、トライン (trine) の名詞形で、3重、3つ組、3つの部分を意味する。定冠詞付き・大文字始まりの the Trinity は、キリスト教での三位一体のことである。英語圏ではトリニティ・カレッジ (Trinity College) と名乗る大学・研究機関が広くある。
628
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/29(木) 15:36:36.46 ID:cmDP4Gws(4/5) AAS
>>624 追加

<再録>
(参考)
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0971-4.pdf
数理解析研究所講究録 1996
楕円曲線の数論の歴史 早稲田 足立恒雄
ここでは (1) $\Gamma^{l}\mathrm{e}1^{\cdot}1\mathrm{I}1_{\mathrm{C}}’\iota \mathrm{t}$ の先駆
的研究、 (2) 楕円曲線の群構造発見を巡る歴史、 (.3) フェルマー問題の Frey による谷山
予想への還元、 の三つに絞って考察することにする。
\S 2 楕円曲線論の始祖 Fermat
(引用終り)

(全部、上記 足立恒雄先生に書いてあるが)
1.昔昔あるところで、楕円曲線論の始祖 Fermat氏が、楕円曲線の面白い性質を発見して、数論研究を行った
2.その後、”群構造の発見 種数 1 の曲線と楕円関数との関係に初めて気が付いたのは Jacobi氏”だった
3.時代は下って、谷山・志村氏は、いまでいうモジュラリティ定理(q展開)を予想として発表した
4.Frey氏の貢献、楕円曲線 y2=x(x-a^p)(x+b^p) ヘレゴーチ・フライ曲線を研究し、谷山・志村予想+ε予想が、フェルマーの最終定理の反例となることを発表
5.ワイルズ氏が、谷山・志村予想の半安定の場合を解決し、フェルマーの最終定理を証明した
6.つまりは、p > 5で a^p+b^p=c^p→ 楕円曲線 y2=x(x-a^p)(x+b^p) →谷山・志村予想(モジュラリティ定理(q展開))+ε予想→フェルマーの最終定理解決
 という流れだったのです

(参考)
https://ja.wikipedia.org/wiki/%E6%A5%95%E5%86%86%E6%9B%B2%E7%B7%9A
楕円曲線
(抜粋)
フェルマーの最終定理(FLT)の証明である。素数 p > 5 に対して、フェルマー方程式
a^p+b^p=c^p で
楕円曲線 y2=x(x-a^p)(x+b^p) ヘレゴーチ・フライ曲線(Hellegouarch?Frey curves)
(引用終り)
629
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/29(木) 15:58:46.16 ID:cmDP4Gws(5/5) AAS
>>628 追加
> 6.つまりは、p > 5で a^p+b^p=c^p→ 楕円曲線 y2=x(x-a^p)(x+b^p) →谷山・志村予想(モジュラリティ定理(q展開))+ε予想→フェルマーの最終定理解決
> という流れだったのです

1.これを、IUTについて見るに
 p = 1で a + b = c → 楕円曲線 y2=x(x-a)(x+b) →谷山・志村予想(モジュラリティ定理(q展開))+ε'予想→スピロ予想解決
 となる。そういう流れではないかと(^^
2.で、”ε'予想=IUT1〜4” なのです
3.要は、”p = 1で a + b = c”だけを眺めても、なかなか先が見えない
 同様に、”楕円曲線 y2=x(x-a)(x+b)”だけを 眺めても、なかなか先が見えない
 そこで、望月先生は、”谷山・志村予想(モジュラリティ定理(q展開))+IUT1〜4”という視点で、解決しようとしたのではないかと
 「ε'予想=IUT1〜4」の前に、膨大な準備論文があると聞いていますが
4.私のこと? 私は、細かいことはさっぱりです。ミーハーのヤジウマですから
 >>590 PROMENADE IN IUTなどが進むと、また何か解説の情報が入ってくるのではと、期待して待っています(^^
 IUTの原論文など、難しすぎ
 私には、とても、とても。まともには 読めませんよ。斜めからか、裏からか、後ろからかですなw(^^;
5.まあ、競馬の三冠馬同様です
「出遅れていた望月号、さあ、第四コーナーを回って、直線に入ってきた。懸命の追い込みだ。2022 モスクワICMのゴールを目指せ〜!」
 ですよ(^^

(参考)
https://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%94%E3%83%AD%E4%BA%88%E6%83%B3
スピロ予想
(抜粋)
言明
任意の ε > 0 に対し、定数 C (ε) が存在して、有理数体 Q 上定義された全ての楕円曲線 E に対して、E の極小判別式を Δ で、導手を f で表すと、
|Δ|<=C (ε) ・f^(6+ε)
が成り立つ。

以上は有理数体における主張であるが、一般の代数体Ver.や関数体Ver.もある。関数体Ver.は、Szpiro の定式化のずっと以前に小平邦彦によって発見されており、その証明は易しい[1]。

ABC予想との関係
スピロ予想より強い以下の主張がABC予想と同値である[2]。

(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s