[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
797: 132人目の素数さん [sage] 2020/11/08(日) 07:54:01.96 ID:bKzT4Sg/(1/15) AAS
>>795
>Zermeloのシングルトンによって
>{}:=x1, {{}}:=x2, … で、
>その極限としてωが出来たとして
質問1.極限、どうやってとるの?
>その後に、ω+1={ω}、ω+2={ω+1}、・・・と続いていくよ
それは誰も否定してないけど
>その隙間を埋める極限として lim n→∞ xn =ω として定義しているってこと
質問2.ω={x}となるというけど、xは具体的に何?
798(1): 132人目の素数さん [sage] 2020/11/08(日) 07:54:35.80 ID:bKzT4Sg/(2/15) AAS
>>795
>Zermeloのシングルトンによって
>{}:=x1, {{}}:=x2, … で、
>その極限としてωが出来たとして
質問1.極限、どうやってとるの?
>その後に、ω+1={ω}、ω+2={ω+1}、・・・と続いていくよ
それは誰も否定してないけど
>その隙間を埋める極限として lim n→∞ xn =ω として定義しているってこと
質問2.ω={x}となるというけど、xは具体的に何?
803: 132人目の素数さん [sage] 2020/11/08(日) 10:01:32.91 ID:bKzT4Sg/(3/15) AAS
>>799
>”lim n→∞ xn =ω”
具体的な操作は?
lim n→∞ xn=∪(n∈N)xnなら、シングルトンになりませんよ
>”・・→∞”とか”・・→ω”とかは、ご説明として書いただけで、
>数学的には蛇足(循環論法になる)で取った方がいいけど、
>5chの議論として分り易くしたんだ
循環論法以前に、そもそも極限操作が一切書いてありません
中身がないなら分かりようがない 議論になりませんね
まず、具体的な極限操作を書いてくださいね
以前書いた図形の遊びなら、集合にならないので却下されます
804: 132人目の素数さん [sage] 2020/11/08(日) 10:13:56.67 ID:bKzT4Sg/(4/15) AAS
>>802
>>質問2.ω={x}となるというけど、xは具体的に何?
>”具体的に”の数学的定義は、な〜んだ?w(^^
>そういう質問って、幼稚だよ
もしかして、答えられなくて、キレてます?
そもそも要素が何かも考えずに書き込むって、幼稚ですよね?
それじゃ0.999…と1の間に無数の数があるといっときながら
一つも具体例を提示できない安達氏と同じですよ
807: 132人目の素数さん [sage] 2020/11/08(日) 11:21:40.48 ID:bKzT4Sg/(5/15) AAS
>>805
>順序数の Zermeloシングルトンωを、極限として、抽象的に定義すれば良い
だからどう極限をとるんですか?
「抽象的」という言葉を「手順を示さず」と”誤解”してますか?
>ωは、Zermelo法なら、集合としての濃度は1だ。
>そう定義すればいい。それで良いんじゃ無い?
定義できてないので全然良くないですね ぶっちゃけ最悪
それじゃIUTどころか
大学数学も無理ですよ
810: 132人目の素数さん [sage] 2020/11/08(日) 13:32:11.45 ID:bKzT4Sg/(6/15) AAS
>>806
質問に答えられないのが悔しいからって
「ボクはIUTのすべてが理解できるもん!」
泣きながらむしゃぶりつく三歳児みたいな
書き込みはご勘弁願えますから
痛々しすぎて涙が出ちゃう
811: 132人目の素数さん [sage] 2020/11/08(日) 15:42:03.69 ID:bKzT4Sg/(7/15) AAS
まとめ
Zermeloのωが
1.{{{…}}}ならω={ω}となり、基礎の公理を満たさない
2.…{{{}}}…ならそもそも最も外側の{}がないので集合ではない(当然、要素もない)
3.任意のnへの∋降下列を持つのは
無限個の自然数を要素として持つとき、そのときに限る
812: 132人目の素数さん [sage] 2020/11/08(日) 15:54:15.83 ID:bKzT4Sg/(8/15) AAS
>>802
>無限公理
>ZF公理系における公式な定義は次の通りである。
>空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する:
(引用終り)
>このままの無限公理では、
>"2.基数としては、0=Φ(空集合)、1={Φ}、2={0,1}、3={0,1,2}、・・・、n={0,1,2,・・n-1}、・・"
>には適用しにくい
? ただ適用すればそうなるが
1=0∪{0}={}∪{0}={0}
2=1∪{1}={0}∪{1}={0,1}
3=2∪{2}={0,1}∪{2}={0,1,2}
…
そして、ωは
・0を要素とする
・nを要素とすれば、n+1=n∪{n}を要素とする
ので、{0,1,2,…}
813: 132人目の素数さん [sage] 2020/11/08(日) 15:59:47.98 ID:bKzT4Sg/(9/15) AAS
>>802
>二つ方法がある
>1)一つは、n番目の集合Snとして、
>"0=Φ(空集合)、1={Φ}、2={0,1}、3={0,1,2}、・・・、n={0,1,2,・・n-1}、・・"を使って
>別に、Sn={0,{0,1}, {1,2}, ・・, {n-2,n-1} }みたく、ノイマンの後者を作って、
>それを集めた集合Snを作って、それに無限公理を適用して、無限集合を存在させる
何わけわからんこといってるんだろう?この人は
n={0,1,…n-1}に対して
ノイマンの後者n+1は
n∪{n}={0,1,…n-1,n}
となりますが
こんな簡単なことも理解できないんじゃ
IUTどころか微積分も線形代数も…
♪無理〜、サファリパーク
814: 132人目の素数さん [sage] 2020/11/08(日) 16:05:12.86 ID:bKzT4Sg/(10/15) AAS
>>802
>2)もう一つは、無限公理を若干手直しして、
> 任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する
> ↓
> 任意の要素 x に対して {x} を要素に持つ集合が存在する
> とすること
それはツェルメロの後者関数を使った場合のωの作り方だな
1={0}
2={1}={{0}}
3={2}={{{0}}}
この場合も
ωは
・0を要素とする
・nを要素とすれば、n+1={n}を要素とする
ので、{0,1,2,…}
結果は同じ ただ個々の自然数を表す集合が異なるだけ
こんな簡単なことも理解できないんじゃ
IUTどころか微積分も線形代数も…
♪無理〜、サファリパーク
815: 132人目の素数さん [sage] 2020/11/08(日) 16:12:26.60 ID:bKzT4Sg/(11/15) AAS
>>805
Zermeloの後者関数による無限公理でωをつくっても、
その中の要素には最大元は存在しないので
シングルトンを作ることはできません
極限・極限とわめいてますが、操作が示されてないので作れません
抽象・抽象とわめいてますが、操作も示さずに存在は示せません
こんな簡単なことも理解できないんじゃ
IUTどころか微積分も線形代数も…
♪無理〜、サファリパーク
816: 132人目の素数さん [sage] 2020/11/08(日) 16:19:34.01 ID:bKzT4Sg/(12/15) AAS
>>806
>現代の高等数学の多くの概念は、殆どが抽象的な思念の存在でしかない
>特に、”無限”がからむ概念はそうだ
>リーマン球面の北極点の∞点しかり、射影幾何の無限遠点しかり
ん?どっちも座標系の張り合わせで具体的に構成できますが?
リーマン球面の場合、w=1/zという張り合わせで、
w=0以外の点は全部zのある点に対応します
そしてw=0の点がzを基準とした場合の無限遠点になります
n次元射影空間も、実は同様の考え方で、
n+1枚の座標系の張り合わせで実現できます
(リーマン球面は、複素射影直線なので2枚の座標の張り合わせで実現できます)
多様体論の初歩ですね
こんな簡単なことも理解できないんじゃ、IUTは到底…
♪無理〜、サファリパーク
817: 132人目の素数さん [sage] 2020/11/08(日) 16:25:02.95 ID:bKzT4Sg/(13/15) AAS
ちなみに再三繰り返してる
♪無理〜 サファリパーク
の元ネタは・・・こいつ↓です
https://www.youtube.com/watch?v=rCem9COovjE&feature=emb_title
818: 132人目の素数さん [sage] 2020/11/08(日) 16:59:03.97 ID:bKzT4Sg/(14/15) AAS
某スレッドでは、◆yH25M02vWFhP氏を
日向坂の齊藤京子にたとえたけど、
実はこいつ↓かもしれんな 出身も関西だし
https://www.youtube.com/watch?v=CHz5G9EiA-Y
819: 132人目の素数さん [sage] 2020/11/08(日) 17:19:11.54 ID:bKzT4Sg/(15/15) AAS
今日の迷言
「現代の高等数学の多くの概念、特に、”無限”がからむ概念は、
殆どが抽象的な思念の存在でしかない
リーマン球面の北極点の∞点しかり、射影幾何の無限遠点しかり」
二行目まではかっこいいんだが、三行目でガクッとズッコケる
いやこれほど具体的な構成、ほかにないって!
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.358s*