[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
547: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/18(日) 19:38:34.42 ID:ZLSkSSTT(1/4) AAS
メモ貼る
https://stacks.math.columbia.edu/bibliography
The Stacks project
Table of contentsBibliography
(抜粋)
Grothendieck, A., Standard conjectures on algebraic cycles
Grothendieck, Alexander, Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux (SGA 2)
Grothendieck, Alexander, Fondements de la geometrie algebrique
Grothendieck, Alexander, La theorie des classes de Chern
Grothendieck, Alexander, Revetements etales et groupe fondamental (SGA 1)
Grothendieck, Alexander, Sur quelques points d'algebre homologique
Grothendieck, Alexander, Technique de descente et theoremes d'existence en geometrie algebrique. I. Generalites. Descente par morphismes fidelement plats
Grothendieck, Alexander, Technique de descente et theoremes d'existence en geometrie algebrique. II. Le theoreme d'existence en theorie formelle des modules
Grothendieck, Alexander, Techniques de construction et theoremes d'existence en geometrie algebrique. III. Preschemas quotients
Grothendieck, Alexander, Techniques de construction et theoremes d'existence en geometrie algebrique. IV. Les schemas de Hilbert
Grothendieck, Alexander and Dieudonne, Jean, Elements de geometrie algebrique I
Grothendieck, Alexander and Dieudonne, Jean, Elements de geometrie algebrique I
Grothendieck, Alexander and Dieudonne, Jean, Elements de geometrie algebrique II
Grothendieck, Alexander and Murre, Jacob P., The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme
Grothendieck, Alexander and Raynaud, Michel and Rim, Dock Sang, Groupes de monodromie en geometrie algebrique. I
Grothendieck, Alexandre, Seminaire de geometrie algebrique du Bois-Marie 1965-66, Cohomologie l-adique et fonctions L, SGA5
548
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/18(日) 19:51:52.82 ID:ZLSkSSTT(2/4) AAS
>>546
>フロべニオイドって自然な定義なのか?

さあ?
下記の星裕一郎を読んでみて(^^

https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244783
宇宙際 Teichmuller 理論入門 PDF (2019) 星裕一郎

§ 0. 序
本稿執筆の際に心掛けたこととして, 以下の 2 点があります.
(a) その段階その段階
で直面する問題を明示的に述べて, そして, 宇宙際 Teichm¨uller 理論におけるその問題の
解決の方法を説明することで, (たとえ説明に多少の遠回りや重複, 脱線などが生じたとし
ても) 宇宙際 Teichm¨uller 理論で行われている様々な議論, 及び, そこに登場する様々な概
念が, “自然なもの”, “必要なもの” であることを, 可能な限り明らかにするように努めま
した.
(b) 宇宙際 Teichm¨uller 理論にはたくさんの “新しい考え方” が登場します. それ
ら (の少なくともいくつか) は決して難しいものではないのですが, その “新奇性” によっ
て, そういった考え方に対する理解への努力が放棄される, という事態が発生しているの
かもしれないと思います. そこで, たとえ非常に初等的なものであっても, いくつもの例
を挙げることで, そのような新しい考え方の新奇性のみによる議論からの脱落を生じさせ
ないように努めました.

つづく
549: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/18(日) 19:52:15.49 ID:ZLSkSSTT(3/4) AAS
>>548
つづき

§ 2. フロベニオイドの円分剛性同型

次に, 位相群作用付きモノイド Gk → OΔk
の同型物 G → M を考察しましょう. この
データ G → M は, フロベニオイド (Frobenioid - cf. [6], Definition 1.3) と呼ばれ
る数学的対象のある一例と等価なデータとなっています. こういったフロベニオイド (の
ある一例と等価なデータ - 簡単のため, 以下, もうこれをフロベニオイドと言い切っ
てしまいますが) が与えられたとき, その “G” の部分を エタール的 (´etale-like - cf.,
e.g., [6], Introduction, §I4) 部分と呼び, そして, その上, “M” の部分を Frobenius 的
(Frobenius-like - cf., e.g., [6], Introduction, §I4) 部分と呼びます. (この場合の) エ
タール的部分は, 位相群で, 出自は Galois 群ですから, つまり, “対称性” であり, 感覚と
しては “質量のない”, “実体のない” (すなわち, “夢のような”, “仮想的な”) 対象です. 一
方, (この場合の) Frobenius 的部分は, 位相モノイドで, 出自は適当な数の集まりですから,
感覚としては “質量のある”, “実体を持つ” (すなわち, “現実に存在する”, “実在する”) 対
象です.
(引用終り)
以上
551: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/10/18(日) 23:23:52.09 ID:ZLSkSSTT(4/4) AAS
洗脳ないでしょ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s