[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
504
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/25(火) 21:06:33.00 ID:SuJQZ9Ih(1/4) AAS
>>497 補足
(引用開始)
a)0.999...=0
b)0.999...≠0

選択肢a)は、スタンダード
選択肢b)は、ノンスタンダード

それだけのこと
ややこしい議論は不要でしょ、21世紀では
(引用終り)

補足資料下記
熟読下さい(^^
https://en.wikipedia.org/wiki/Infinitesimal
Infinitesimal
(抜粋)
Infinitesimals in teaching
Students easily relate to the intuitive notion of an infinitesimal difference 1-"0.999...",
where "0.999..." differs from its standard meaning as the real number 1,
and is reinterpreted as an infinite terminating extended decimal that is strictly less than 1.[14][15]

DeepL訳(ちょっと手直ししたが)
生徒は直感的に1-"0.999.... "という無限小差の概念を理解することができます。
"0.999.... "は、実数1としての標準的な意味とは異なります。
そして、厳密には1よりも小さい無限終端の拡張10進数として再解釈されます。

14. Ely, Robert (2010). "Nonstandard student conceptions about infinitesimals" (PDF). Journal for Research in Mathematics Education. 41 (2): 117?146. JSTOR 20720128. Archived (PDF) from the original on 2019-05-06.
15. Katz, Karin Usadi; Katz, Mikhail G. (2010). "When is .999... less than1?" (PDF). The Montana Mathematics Enthusiast. 7 (1): 3?30. arXiv:1007.3018. ISSN 1551-3440. Archived from the original (PDF) on 2012-12-07. Retrieved 2012-12-07.

つづく
505
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/25(火) 21:07:32.65 ID:SuJQZ9Ih(2/4) AAS
>>504
つづき

https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E5%B0%8F
無限小
(抜粋)
無限小(むげんしょう、英: infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである[1]。 術語 "infinitesimal" は、17世紀の造語 羅: infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである[2]。無限小はライプニッツが連続の法則(英語版)や同質性の超限法則(英語版)などをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。

シラクサのアルキメデスは、自身の著書 The Method of Mechanical Theorems(英語版)(『方法』)において不可分の方法と呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた[3]。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。

つづく
506
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/25(火) 21:10:08.61 ID:SuJQZ9Ih(3/4) AAS
>>505
つづき

ライプニッツによる無限小の利用は、連続の法則(英語版)「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」[* 1]や同質性の超限法則(英語版)(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。
18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 Cours d'Analyse(『解析教程』)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。
カントールとデデキントがステヴィンの連続体をより抽象的な対象として定義したのと同様に、パウル・デュ・ボア=レーモン(英語版)は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。
デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。
スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にエドウィン・ヒューイット(英語版)が、および1955年にイェジー・ウォッシュ(英語版)が成した先駆的研究に基づき超準解析を展開した)。
ロビンソンの超実数 (hyper-reals) は無限小で豊饒化された連続体の厳密な定式化であり、移行原理(英語版)がライプニッツの連続の法則の厳密な定式化である。また、標準部(英語版)はフェルマーの擬等式の方法(英語版) (ad-equality, pseudo-equality) の定式化である。

つづく
507: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/25(火) 21:10:27.69 ID:SuJQZ9Ih(4/4) AAS
>>506
つづき

ウラジーミル・アーノルドは1990年に以下のように書いている:

Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.[4](訳: 今日では、解析学の授業において無限小量について述べることはあまり一般的ではない。その結果、当世の学生はこの言葉づかいに全く習熟していない。にも拘らず、未だにそれを扱うことが必要である)

目次
1 一階の性質
2 無限小を含む数体系
2.1 形式級数体
2.1.1 ローラン級数体
2.1.2 レヴィ-チヴィタ体
2.1.3 超越級数体
2.2 超現実数体
2.3 超実数体
2.4 準超実数体
2.5 二重数環
2.6 滑らかな無限小解析
(引用終り)
以上
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.041s