[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
847(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 11:32:03.57 ID:EWXzW0g+(1/8) AAS
>>844
楕円関数・テータ関数・モジュラー関数
2chスレ:math
この感想(まとめ)だけで良いんじゃ無い?
あとは、ゴミでしょ
つまり、” C*:x0x2^2=4x1^3-g2x0^2x1-g3x0^3 ”とかさ
テキストの劣化版を貼付けて、これ殆どゴミでしょ
視認性悪いよね。せめて、テキストのページ数でも、付記しておいたらどうよ?
850(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 19:44:26.56 ID:EWXzW0g+(2/8) AAS
>>849
ふーん
下記か(^^
アマゾン
楕円関数論 増補新装版: 楕円曲線の解析学 (日本語) 単行本 ? 2020/5/27
梅村 浩 (著)
楕円関数論―楕円曲線の解析学 (日本語) 単行本 ? 2000/7/1
梅村 浩 (著)
東京大学出版会; 増補新装版 (2020/5/27)
(旧版)
上位レビュー、対象国: 日本
susumukuni
VINEメンバー
5つ星のうち5.0 楕円関数論の素晴らしい入門書
2004年6月19日に日本でレビュー済み
Amazonで購入
19世紀数学の華である楕円関数論の従来の教科書・解説書では、2重周期を持つ(即ち、複素トーラス上の)解析関数という観点から、楕円関数の解析的な面が主に扱われており、種数1の代数曲線(即ち、楕円曲線)という代数幾何学的対象の超越的(複素解析的)な面に詳しいものは少なかった。本書は、この「楕円曲線の解析学」として、楕円関数論を論ずる本格的な入門書で、この理論に興味を持つすべての方にお薦めできる好著である。
本書の大きな特徴として、以下の3点を挙げることができる。先ず、楕円関数の理論が、計算を含めて非常に詳しく丁寧に解説されていること。次に、Jacobiの楕円関数とその周期や加法公式などが、テータ関数を経由して巧みに導かれており、「テータ関数」の理論のステキな入門書になっていること。最後に、楕円関数の応用として、算術幾何平均と楕円積分の周期との相互関係、及び楕円関数と5次方程式の解法との関連、などの興味深い話題が詳しく解説されていることである。
私見ではあるが、本書のハイライトは、テータ関数に関する「Riemannのテータ関係式」と「Jacobiの変換公式」、及び4.7節に述べられている楕円積分の周期の解説にあると思う。特に、4.7節に述べられている楕円積分のモジュラスkでの微分計算、及び4つの楕円積分の間に成立する「Legendreの関係式」の証明はまことに素晴らしく、間違いなく本書の一つの頂点に位置すると思う。
本書の平易で丁寧な記述は、この理論を初めて学ばれる方でも、そのかなり高度な内容をフォローする事を可能にしている。平易な記述ながら豊富で充実した内容という両立が難しい要求を見事に満たしている本書は、楕円関数論の現代の名著と言うに相応しい。
851(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 19:51:36.73 ID:EWXzW0g+(3/8) AAS
最近のだと、下記もある
数学科学生だと、大学図書にあるかも。無ければ、リクエストして買わせろ
アマゾン
楕円積分と楕円関数 おとぎの国の歩き方 (日本語) 単行本 ? 2019/9/25 武部 尚志 (著)日本評論社
【目次】
第0章 イントロ ーー楕円積分と楕円関数の国の俯瞰図
第1章 曲線の弧長 ーー楕円積分への入り口
第2章 楕円積分の分類 ーー道案内板
第3章 楕円積分の応用 ーー旧跡と名所
第4章 ヤコビの楕円関数 ーー天の橋立の股覗き
第5章 ヤコビの楕円関数の応用 ーー路地裏に遊ぶ
第6章 代数関数のリーマン面入門(1)ーー帰って来ても戻っていない
第7章 代数関数のリーマン面入門(2)ーー世界は丸い
第8章 楕円曲線 ーー限りある世界
第9章 複素楕円積分 ーー道案内版を見直す
第10章 上半平面と長方形の対応 ーー鏡の国を通り抜け
第11章 アーベル-ヤコビの定理(1)ーー楕円曲線の住人たち
第12章 アーベル・ヤコビの定理(2)ーー楕円曲線の地図を作ろう
第13章 楕円関数の一般論 ーー定番周遊コース
第14章 ワイエルシュトラスのP関数ーー楕円関数の国の名士
第15章 加法定理 ーー楕円関数の民族性
第16章 加法定理による特徴付けーー楕円関数の国の旗印
第17章 テータ関数(1) ーーねじれた平原
第18章 テータ関数(2) ーー四人で行進
第19章 テータ関数の無限積展開 ーー隣の国へ向かう橋
第20章 ヤコビの楕円関数(複素数版)ーーガイドブックの終わりは旅の始まり
上位レビュー、対象国: 日本
独語学習者
5つ星のうち5.0 中身は本格派です。
2020年11月1日に日本でレビュー済み
Amazonで購入
タイトルは読み物みたいなタイトルですけれどとんでもないです。
中身は完全に数学書で簡単でもありません。
序盤は割とゆっくりな導入ですが、後半はかなり難解で展開も駆け足となります。
まだまだ序盤で苦戦している途中ですが、戸田先生の楕円関数入門と補完しながら読むと読みやすいと思いました。
852(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 19:58:17.00 ID:EWXzW0g+(4/8) AAS
>>851
>戸田先生の楕円関数入門と補完しながら読むと読みやすいと思いました。
補足
こういう態度大事だよね
一冊の本をじっくり読むのも良いが
ある本でつまづいたら、別の本を同じような箇所を見ているというのもありだ
たまに、誤植があったりするが、誤植なら複数本の比較で分かるし
違う視点から解説されていて、納得できる場合も多い
(つーか、筆者には自明でも、読者のレベルによっては非自明ってある。筆者が面倒がって「自明!」的に飛ばしたところを、別の人は丁寧に解説していたりすることがあるし)
855(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 22:06:13.87 ID:EWXzW0g+(5/8) AAS
維新さん、相当あたま悪いね
あなた、数学科にあこがれて入ったのかな?
遠山の数学入門を小学生で読んで
でも、ちょっと間違ったんじゃない?
数学科から数学研究者→アカデミックポスト って、あなたにはムリ
それを早く悟った方が良かったと思うよ
むしろ、文系に行った方がよかったろう
”数学は積み上げ これ豆な”か
確かに、お勉強レベルではね
だが、”数学科から数学研究者→アカデミックポス”というコースに乗るには、それだけじゃ足りないんじゃね?
遠山の数学入門には書いてないだろうが
858: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 22:49:33.55 ID:EWXzW0g+(6/8) AAS
>>856-857
サイコパスのすっとぼけか
相当あたま悪いな
そう謙遜するなよ、維新さん
今日も、”1 位/86 ID中 Total 37”ですよ、維新さん!w(^^
http://hissi.org/read.php/math/20201123/K1d1UHJLVDE.html
必死チェッカーもどき
数学 > 2020年11月23日 > ID:+WuPrKT1
1 位/86 ID中 Total 37
使用した名前一覧
132人目の素数さん
書き込んだスレッド一覧
0.99999……は1ではない その15
Inter-universal geometry と ABC予想 (応援スレ) 49
純粋・応用数学(含むガロア理論)5
IUTを読むための用語集資料集スレ
実数は可算無限であることの証明
Inter-universal geometry と ABC 予想 43
例
純粋・応用数学(含むガロア理論)5
414 :132人目の素数さん[sage]:2020/11/23(月) 10:45:36.29 ID:+WuPrKT1
整数論はよくわからないので基本的な質問
1.初等整数論の基本定理といったら何でしょうか?
2.代数的整数論の基本定理といったら何でしょうか?
もちろん複数上げていただいて構いません
860(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 23:01:55.51 ID:EWXzW0g+(7/8) AAS
>>856
>おれが行ってるのは、「積み上げなしに数学は理解できないよ」
>あんたは否定できなかった、あんた負けたんだよ
”数学科から数学研究者→アカデミックポスト”って人たち
例えば、柏原とか森とか望月とか
例えば古くは、ガウス、アーベル、ヤコビ
この3人は、楕円関数を積み上げで理解したのではない!
どうやったのかは、3人それぞれだろうが、
楕円関数論を作って、それを論文にした人たちだよ、彼らは
まあ、つまりは、3人は数学の目利きで、数学の先が見通せる眼力の持ち主だったろう
高木先生の本「近世数学史談」に書いてある
”この3人は、楕円関数を積み上げで理解したのではない!”
柏原とか森とか望月とか、
同様じゃね?(^^;
アマゾン
近世数学史談 (岩波文庫) (日本語) 文庫 ? 1995/8/18
高木 貞治 (著)
上位レビュー、対象国: 日本
まげ店長
5つ星のうち5.0 楕円関数論をベースにした数学史
2012年2月19日に日本でレビュー済み
Amazonで購入
冒頭からさらっとガウスの円分方程式論で始まるので退いてしまいますが
(しかも「明らかに」と云いつつもまるで解らない...)、そこはサラッと
飛ばして読み進みめば、とても楽しい数学史です。
毛色としては、ベル「数学をつくった人々」の書き方に近いと思いますが、
割と特定の人物に対しては辛口な評価がされるのが(分かっていれば)面白いです。
一番の見ものはアーベルの楕円関数論ですね。通常の数学史ではアーベルの時は
五次方程式の話をメインに持ってきますが、この本では他の数学者との楕円関数論
の論文書きがどの様に並進していたのかを知る事ができます。
861(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 23:22:25.89 ID:EWXzW0g+(8/8) AAS
>>860
>>おれが行ってるのは、「積み上げなしに数学は理解できないよ」
>>あんたは否定できなかった、あんた負けたんだよ
数学の本を読むいろんな立場の人がいる
・例えば、数学研究者でない(アカデミックポストでない)趣味の人
・例えば、数学を使う立場で、明確な目的がある人
・例えば、数学科の学生で、勉強として読む
「数学科の学生で、勉強として読む」なら
「積み上げ」ってことでしょうね
「積み上げ」で、数学の地力を養成することにも繋がる
「数学を使う立場で、明確な目的がある」なら
「積み上げ」でなく、早くその目的に役立つ箇所を見つける読み方が求められる
(学生よりも、時間制約がきついときが多い)
「数学研究者でない(アカデミックポストでない)趣味の人」なら
気楽に読めばいい
「積み上げ」とか気にせず
このスレで、楕円関数を取り上げているのは、IUTのベースに楕円関数論があるからってことだ
「積み上げ」とか、全くお呼びじゃない
証明いらね〜
IUTとそのベースの楕円関数の関係が見えれば良い。最低限それ
それ以上やりたいやつは、やればいい。別に、止めはしない
でも、「積み上げ」なんて必須じゃないよ
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s