[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
808
(2): 132人目の素数さん [] 2020/11/08(日) 12:16:29.45 ID:BM2uk/CN(1/4) AAS
>>795
>・”x∞={x∞}”の証明がない
x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。
x∞に一番外側の"{"と"}"が有るならそれらを外したものはx∞自身ですから正則性公理に反します。
これ以外のケース(例えば、有り且つ無い)はありませんから、結局x∞は集合の要件を満たしません。

>・x∞の極小元は、明らかに空集合Φ={}です。よって、正則性公理に反しないQED
いいえ、{}はx∞の元ではありません。

>・つーか、これ違う
> ∵多分x∞の定義が違うだろうし、順序数と基数の∞との混同でしょう
定義は議論の出発点です。定義が違うと言われても意味不明です。
違う定義の議論をしたいならまずその定義を示して下さい。
809: 132人目の素数さん [] 2020/11/08(日) 12:25:04.00 ID:BM2uk/CN(2/4) AAS
>>795
>{}:=x1, {{}}:=x2, … で、その極限としてωが出来たとして
まず集合列の収束の定義を示して下さい。
次にその定義に沿って集合列 {}, {{}}, … が収束することを証明して下さい。
それらが示されない限りあなたの主張はナンセンスです。
823
(1): 132人目の素数さん [] 2020/11/08(日) 23:34:47.71 ID:BM2uk/CN(3/4) AAS
>>820
ナンセンス。
>x∞に一番外側の"{"と"}"が無いならそもそも集合ではありません。
↑に反論するなら
「一番外側の"{"と"}"が無くても集合である」
を示さなければならないが、まったく明後日のことを述べておりナンセンス。
824: 132人目の素数さん [] 2020/11/08(日) 23:56:40.81 ID:BM2uk/CN(4/4) AAS
>>821
>1.下記「正則性の公理は必ずしもZF公理系を拡張するために必要なものではない」とあるから、正則性公理を絶対視する必要ないと思うけど
「絶対視」なるものが何を指しているのか不明だが、
ZF公理系上のあらゆる集合は正則性公理の要件を満足している必要がある。

>2.されど 折角だから、正則性の公理、下記坪井明人 数理論理学II ”空でない集合 x には ∈ に関して極小となる元 z ∈ x があること,を直観的には意味している.”とあるよね
あるよねと言われても、はあとしか言えませんがw

>3.シングルトンだから、集合を構成する要素は一つ。それ自身が、極小ですよ
「元が一つの場合それ自身が極小元」という主張のようですが、x={x}が反例。
恐らく「∈に関する極小元」の意味を理解していないのでしょう。

>4.さらに、例えば1から始まる自然数の集合N={1,2,3・・n・・}で、この要素は可算無限ある ∵Nは可算無限濃度の集合
> カッコを外して、並べると、1∈2∈3∈・・∈n∈・・ となる可算無限上昇列ができる
> 可算無限上昇列は、可だ ∵この場合要素1が、 ∈ に関して極小となる元だから
だから何でしょう?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s