[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
58: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/28(日) 17:20:30.55 ID:bfBvt+85(4/6) AAS
>>57
つづき
http://www.maths.gla.ac.uk/~mbourque/papers/2dim.pdf
TOY TEICHMULLER SPACES OF REAL DIMENSION 2:
THE PENTAGON AND THE PUNCTURED TRIANGLE
YUDONG CHEN, ROMAN CHERNOV, MARCO FLORES, MAXIME FORTIER BOURQUE,
SEEWOO LEE, AND BOWEN YANG
ABSTRACT. We study two 2-dimensional Teichmuller spaces of surfaces with
boundary and marked points, namely, the pentagon and the punctured triangle.
We show that their geometry is quite different from Teichmuller spaces of closed
surfaces. Indeed, both spaces are exhausted by regular convex geodesic polygons
with a fixed number of sides, and their geodesics diverge at most linearly.
https://en.wikipedia.org/wiki/Orbifold
Orbifold
http://webcache.googleusercontent.com/search?q=cache:N68OPG3WsG8J:pantodon.shinshu-u.ac.jp/topology/literature/orbifold.html+&cd=1&hl=ja&ct=clnk&gl=jp
Orbifold のトポロジーと幾何学 pantodon.shinshu-u.ac.jp ? topology ? literature ?
以上
87(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/10(金) 06:11:34.55 ID:F8J9moxS(2/2) AAS
転載
Inter-universal geometry と ABC予想 (応援スレ) 48
2chスレ:math
337 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/07/09(木) 22:49:15.99 ID:nrcdZVDh [2/3]
>>326
>『ABC予想入門』には
>楕円曲線y^2=x(x-a)(x+b)を構築し、そのような楕円曲線が「比較的少ない」ことを見出す
>とはっきり書いてあるんだけどね
>それがIUT理論にどうつながるのかが分からん
えーと、まず
その話は、『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
のP200にある話だよね
そこには、前段があって
a+b=c で互いに素な (a,b,c) という制約があって、
そういう解は意外の少ないとある
つまり、
a^n + b^n = c^n
という方程式で
n >=3 の場合が、フェルマー予想
n=2 の場合が、ピタゴラスで直角三角形
n=1の場合が、ABC予想
で、 n >=3 の場合(フェルマー予想)で
フライの楕円曲線
y^2=x(x-a^n)(x+ b^n)
を考えると、谷山-志村予想から、a^n + b^n = c^n なる解なしが分かる
で、 n =1 の場合(ABC予想)で
フライの楕円曲線の類似
y^2=x(x-a)(x+ b)
を考えると、スピロ予想から、”a+b=c で互いに素なる解に制約あり”(少ない)が分かる
そういうことが
『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
P197以降に書いてあるみたい
102(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/12(日) 10:28:21.55 ID:/6i4k5qr(5/12) AAS
>>98 脱線
「43 フェルマーの最終定理」中のポアンカレ予想の説明がちょっと違うな
誤:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『3 次元空間において、破れた穴の空いていない複雑な形をした立体』、
「短連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』、
「3 次元球面 S^3に同相」とは『3 次元の球そのものである』ということである。
↓
正:
「単連結な 3 次元閉多様体は 3 次元球面 S^3に同相である」ポアンカレ予想
(注1)
これは、位相幾何学(トポロジー)の問題である。
「3 次元閉多様体」とは『4 次元空間において、”破れて穴の空いて”いない 複雑な形をした立体(3次元)』、
「短連結」とは『輪になった紐を縮めていって 1 点にすることができるというような意味』、
「3 次元球面 S^3に同相」とは『4 次元空間中の3次元の球面である』ということである。
(参考)
https://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%83%B3%E3%82%AB%E3%83%AC%E4%BA%88%E6%83%B3
ポアンカレ予想
(3次元)ポアンカレ予想(ポアンカレよそう、Poincare conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は
単連結な3次元閉多様体は3次元球面 S3 に同相である
https://ja.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1%E5%85%83%E7%90%83%E9%9D%A2
三次元球面
三次元(超)球面(さんじげんきゅうめん、英: 3-sphere; 3-球面)あるいはグローム (glome[1]) [注釈 1]は、通常の球面の高次元版である超球面の特別の場合である。四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。
つづく
178: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/18(土) 21:54:19.55 ID:ywyns0bH(5/5) AAS
>>176
補足
WILLIAM P. THURSTON は、分かるよね
サーストン先生は
”(3) Logical: f′(x) = d if and only if for every ε there is a δ such that・・”
だけじゃ足りないよという
つまり、(1)〜(7)の7つを総合的に考えるべしって
立場だな
”εδマンセー”ではないってことです
”εδマンセー”は
古い
195(2): 132人目の素数さん [sage] 2020/07/23(木) 11:46:12.55 ID:vKDgfP9M(1/5) AAS
Wikipediaに「IUT語」を登録すべきかどうか迷う
BGは東工大教授だからその著書を根拠にすれば学術的な正当性はあるよね?
198: 132人目の素数さん [] 2020/07/23(木) 12:53:23.55 ID:MCfHKB/Y(1/2) AAS
↑
IUT語でなく日本語でたのむ
373: 132人目の素数さん [] 2020/08/06(木) 18:08:23.55 ID:Soxz+OQO(1) AAS
>>368
瀬田よ
分かってないのに分かってる風を装う癖そろそろ治したら?
687: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 09:58:07.55 ID:o4gNmK89(6/18) AAS
>>686 リンク追加訂正
"「可算無限シングルトン」のレーベンハイム-スコーレム"に
↓
"「可算無限シングルトン」のレーベンハイム-スコーレム"(>>681)に
822: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/08(日) 23:16:09.55 ID:rSmWbt0i(11/11) AAS
>>820
>一番外側の円を半径3/4として、そこから内側に半径1/2,1/3,…,1/n,…の円を描く
一番外側の円は、半径3/4として、半径1を外しておくと
次に、1と2の間で、同じように同心円ができるよ
0〜1で、ωの同心円で、その外にまた、1〜2の間の同心円ができて、
0〜2で、2ωの同心円
・
・
・
と続けられる
という仕掛けです(^^
858: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/23(月) 22:49:33.55 ID:EWXzW0g+(6/8) AAS
>>856-857
サイコパスのすっとぼけか
相当あたま悪いな
そう謙遜するなよ、維新さん
今日も、”1 位/86 ID中 Total 37”ですよ、維新さん!w(^^
http://hissi.org/read.php/math/20201123/K1d1UHJLVDE.html
必死チェッカーもどき
数学 > 2020年11月23日 > ID:+WuPrKT1
1 位/86 ID中 Total 37
使用した名前一覧
132人目の素数さん
書き込んだスレッド一覧
0.99999……は1ではない その15
Inter-universal geometry と ABC予想 (応援スレ) 49
純粋・応用数学(含むガロア理論)5
IUTを読むための用語集資料集スレ
実数は可算無限であることの証明
Inter-universal geometry と ABC 予想 43
例
純粋・応用数学(含むガロア理論)5
414 :132人目の素数さん[sage]:2020/11/23(月) 10:45:36.29 ID:+WuPrKT1
整数論はよくわからないので基本的な質問
1.初等整数論の基本定理といったら何でしょうか?
2.代数的整数論の基本定理といったら何でしょうか?
もちろん複数上げていただいて構いません
890(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/26(木) 13:57:57.55 ID:31albqLV(2/3) AAS
>>886
> 蝸牛(かたつむり)登らば登れ富士の山
> SU-METALの座右の銘は「かたつむり 休まず登れ 富士の山」
おれら、工科の人間は現実的だから、そういうおとぎ話やマンガの話には、真面目には乗れないね(^^;
確かに、無限の時間を掛ければ、アキレスの亀やカタツムリでも、富士の山だろうよ
だが、現実には、そういう亀やカタツムリはいない
人は、そういう読み方は向いていない
というか、向いていない人が多い
大概、挫折して終わる
だったら、ざっと斜め読みで良いから最後まで嫁っていいたいね
最後まで読めば、分かったところ分からないところ、まだら模様になるだろうよ
で、分からないところをまた読むか、別の本を探す、あるいはネット検索や、人に聞くなど
その人次第
それが、お薦めだな
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.048s