[過去ログ] IUTを読むための用語集資料集スレ (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
22
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/06/21(日) 10:32:43.35 ID:W0WIc7wX(16/18) AAS
>>21
つづき

また, (c) の多輻的な表示は, その “加法的 Hodge 劇場” による加法的対称性を用い
たラベルの管理を破壊してしまわないようなラベルの管理のもとで実現されなければなり
ません. その上, “加法的 Hodge 劇場” に現れる大域的な対称性と多輻的に表示されるべ
き (c) の非両立性に, ラベルの管理を対応させなければなりません. (§21 の議論を参照.)
LabCuspK〜= F×l/{±1} という集合は, テータ関数の非単数的特殊値に対する自然なラベ
ルの集合であり, この集合に対する乗法的対称性は上述のラベルの管理に関連します. こ
の乗法的/数論的な対称性をもとにした, 数体やその上の数論的直線束たちと, テータ関数
の代入点との間の適切な関連付けが, §21 から §25 までで構成される “乗法的 Hodge 劇
場” という概念によって実現されます. (§18 や §21 の議論を参照.) つまり, 非常に大雑把
なレベルでは, “乗法的 Hodge 劇場” (つまり, D-ΘNF Hodge 劇場や ΘNF Hodge 劇場)
は, (c) の多輻的な表示, 及び, その (c) と (“加法的 Hodge 劇場” におけるテータ関数へ
の “代入” という操作を行うことによって得られる) (a) や (b) との間の関連付けのため
の設定だと考えられます.

つづく
35: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/06/24(水) 18:27:59.35 ID:o/pgoU2Q(3/3) AAS
>>33
なにが良いかというと
望月先生のIUTの和文解説に出てくる絵と類似の絵が沢山出てくることと
IUTで使われている概念の 多分類似概念が多数出てくるので、大変参考になる
ざっと見ておくと、目が慣れるでしょうね(^^;
74
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/07/02(木) 07:16:21.35 ID:7yuS9dUI(1/3) AAS
>>67

”両立的”:両立的とは、IUTのリンクで結びつけられた 2つの量が、等式または不等式として、左辺と右辺の両方における
というような意味みたいですね(^^;

星裕一の論文
宇宙際 Teichmuller 理論入門 PDF (2019) (Indexあり)https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244783
(抜粋)
P94
では, どのようにすれば実際の値に対する等式 “deg L = deg L◯xN ” が得られるので
しょうか. ここで再び,deg L (または deg L◯xN ) という値は, qE (または qNE ) なる “生成元” によって定
義された数論的直線束 L (または L◯xN ) の次数である
という事実を思い出しましょう. つまり, 安直リンクの条件に登場する †qNE や ‡qE から
所望の等式に登場する deg L◯xN や deg L を得るためには, “それら生成元から定まる数論
的直線束の次数の計算” を行う必要があります. したがって,
安直リンク (つまり,†qNE → ‡qE なる適当な結び付き)
†S → ‡S であって, “そ
れら生成元から定まる数論的直線束の次数の計算の仕組み” を保つもの
が存在すれば, 所望の等式 “deg L = deg L◯xN ” が得られるはずだということです. そし
て, 実際にそれが (ある意味で) 実現可能であるという主張が, 非常に大雑把には, 宇宙際
Teichm¨uller 理論の主定理となります:
宇宙際 Teichm¨uller 理論の主定理の雰囲気: (“充分一般的な E/F” に対して)
†qNE → ‡
qE なる適当なリンク †S → ‡S が存在して, それは,
†qNE → ‡qE
の両辺を生成元とする数論的直線束の次数の計算の仕組みと (軽微な不定性を除いて)
両立的となる.

つづく
222: 132人目の素数さん [sage] 2020/07/25(土) 11:05:45.35 ID:GMz9Qgqz(2/4) AAS
>>215
損切り
https://ja.wikipedia.org/wiki/%E6%90%8D%E5%88%87%E3%82%8A

損切り(そんぎり、ロスカット、Cut Loss)とは、
含み損が生じている投資商品を見切り売りして
損失額を確定すること。

株式や先物取引、外国為替証拠金取引(FX)など相場や、
不動産投資などの用語として用いられる。

投資の後に評価額が下落した場合、難平や塩漬けすると
さらに下落が続いて損害が拡大する可能性がある。
撤退するための明確な根拠を持って早めに損切りを行うことは、
損失の拡大を防止し、資金を守る方法として重要といわれる。
521
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/08/28(金) 14:30:12.35 ID:GoijW/XC(1/2) AAS
コウモリを辞任するコウモリがなんか言っているw
566
(1): 132人目の素数さん [sage] 2020/10/20(火) 19:26:53.35 ID:8nlx/Wj4(3/3) AAS
数学でも他の学問でも定義は真っ先に読めよ

定義が理解できない時点で学問諦めろよ

なんかこいつ学問なめてるよな ふざけてんのか?
691
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 10:32:27.35 ID:o4gNmK89(8/18) AAS
>>690
>∞−1は定義に依存するよ(下記)

スレチついでに
∞−1=∞という定義は可能だよ(下記)

でも、これを通常の数と同じに式変形して
∞−∞=1 とすることはできない!

つまりは、∞とかωとかは、
通常の計算とか式変形に乗らないってことでしょ!(^^

(参考)
https://ja.wikipedia.org/wiki/%E6%8B%A1%E5%A4%A7%E5%AE%9F%E6%95%B0
拡大実数
拡張実数(かくちょうじっすう、英: extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 +∞ と負の無限大 -∞ の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではない

算術演算
実数全体 R における四則演算は、以下の規約により部分的に R まで拡張することができる。

式 "a + ∞" は "a + (+∞)" の意味でもあり "a - (-∞)" の意味でもある。また、式 "a - ∞" は "a - (+∞)" の意味でもあり "a + (-∞)" の意味でもある。

しかし、所謂不定形の式(英語版) ∞ - ∞, 0 × (±∞), ±∞?±∞ などはやはり意味を成さない(英語版)とするのが普通である。これらの規約は函数の無限大に関する極限についての法則をモデル化するものになっているが、確率論および測度論ではさらに、"0 × (±∞) = 0" を規約に追加することが多い(確定した 0 を掛けた 0 × (有限) の形の式の極限としての意味を持つことが多いため[2])。

また、数式 1/0 は +∞ とも -∞ とも定めることができない。これは連続函数 f(x) が f(x) → 0 を満たすとすると、これは逆数函数 1/f(x) が集合 {-∞, +∞} の任意の近傍に殆ど含まれる (eventually contained in) ことは意味するけれども、必ずしも 1/f(x) が -∞ か +∞ の何れか一方に収斂することを意味しないことによる(それでも、その絶対値 |1/f(x)| は +∞ へ近づく)。何となれば f(x) = 1/(sin(1/x)) を考えるとよい。
696
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2020/11/01(日) 12:35:22.35 ID:o4gNmK89(11/18) AAS
>>679
>一介の教師にすぎません

ああ
たしか、哀れな素人氏が
「さる石は、小学生の塾で教えている」とか言っていたな
がんばれよ(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.056s