[過去ログ] 分からない問題はここに書いてね458 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
946(2): 132人目の素数さん [sage] 2020/03/29(日) 04:37:24.61 ID:JlXmRJZe(1/4) AAS
>>942
図から、円の直径 10 を求めて、円に内接する3辺の長さ 6、8、10(直径) の直角三角形の辺の長さ8を求める。
2辺の長さが8に等しい二等辺三角形の底辺の長さを 2y y>0 とする。
図から、対頂角が鈍角の互いに相似な三角形について、8:x=2y:(10-8)=y:1 ∴ xy=8。
図から、円に内接する円周角が等しく互いに相似な三角形の性質と三平方の定理より、
√( (√(8^2-y^2))^2 + (x+y)^2 ):x=6:2=3:1
∴ 3x=√( (√(8^2-y^2))^2 + (x+y)^2 )。
∴ 9x^2=8^2-y^2 + (x+y)^2=64 + x^2 + 2xy
∴ 4x^2=32+xy=32+8=40 ∴ x^2=10 ∴ x=√10 (∵ x>0)。
949: 132人目の素数さん [sage] 2020/03/29(日) 09:31:55.20 ID:JlXmRJZe(2/4) AAS
>>946は直径を通らなくても、二等辺三角形の3辺の長さが分かれば適用出来ることがあるから、或る意味で有力な求め方になっている。
951: 132人目の素数さん [sage] 2020/03/29(日) 10:22:32.12 ID:JlXmRJZe(4/4) AAS
>>950の訂正:
>>846 → >>946
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.080s