[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
910
(1): 132人目の素数さん [sage] 2020/03/26(木) 21:24:39.90 ID:zUlAmjt2(1) AAS
 Σ[k=1..n] a[k] = 1 + 1/2 + 1/3 + ・・・・・ + 1/n = H[n],
とおく。
 Σ[j=1..k] a[j]/j = Σ[j=1..k] {C(n,j) (-1)^(j-1)} /jj
 = Σ[j=1..k] (1/j) Σ[m=1..j] 1/j
 = Σ[j=1..k] H[j]/j
 = (1/2)H[k]^2 + (1/2)Σ[j=1,k] 1/jj,
まで出た。
 Σ[k=1..n] Σ[j=1..k] a[j]/j
 = {(n+1)/2}{H[n]^2 - Σ[k=1,n] 1/kk} - H[n],
かな?

H[n] 〜 log(n) + γ   【γ = 0.5772...】
913
(1): 132人目の素数さん [sage] 2020/03/27(金) 01:30:07.86 ID:GzR1OrPK(1/3) AAS
>>910 訂正

 Σ[j=1..n] a[j]/j = Σ[k=1..n] {C(n,k) (-1)^(k-1)} /kk
 = Σ[k=1..n] (1/k) Σ[m=1..k] 1/m
 = Σ[k=1..n] H[k] /k
 = (1/2)H[n]^2 + (1/2)Σ[k=1,n] 1/kk,
は出た。 しかし k<n に対して
 Σ[j=1..k] a[j]/j
を出すのが難しく (∵ a[j] は陰にnに依存する。) (2) に使えそうにない。。。

むしろ
 Σ[k=1..n] Σ[j=1..k] a[j] /j
 = Σ[k=1..n] (n+1-k) a[k] /k
 = Σ[k=1..n] (n+1-k) {C[n,k] (-1)^(k-1)}/kk
 = {(n+1)/2}{H[n]^2 - Σ[k=1,n] 1/kk} - H[n],
とする方が早いかな
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s