[過去ログ] 分からない問題はここに書いてね458 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
887
(1): 132人目の素数さん [sage] 2020/03/23(月) 19:49:00.11 ID:d4Un7xXa(1) AAS
>>880
どうでもいいことだが、
1*N + 2*(N-1) + ... +(N-1)*2 + N*1 = N(N+1)(N+2)/6
の別証明。

右辺は C(n+2,3) であるが、これを次のように考える。
1,2,3,4,…,n+2 のn+2個の数から3つ選ぶ選び方については
選んだ3つの数を左、真ん中、右と呼ぶことにすると、
真ん中に選ぶ数で場合分けできる。
真ん中が2となる選び方は、左1通り*右n通り。
真ん中が3となる選び方は、左2通り*右(n-1)通り。
真ん中が4となる選び方は、左3通り*右(n-2)通り。

真ん中がn+1となる選び方は、左n通り*右1通り。
895: 132人目の素数さん [sage] 2020/03/24(火) 00:41:48.96 ID:MOWxPvKi(1/3) AAS
>>887
更にどうでもいいことだが、
 1・N + 2・(N-1) + ・・・・ + (N-1)・2 + N・1

 {1 + 2x + 3x^2 + ・・・・ + k・x^(k-1) + ・・・・ }^2
 = (1 + x + x^2 + x^3 + ・・・・ + x^k + ・・・・ )^4
 = 1/(1-x)^4
 = Σ[k=0,∞] C[k+3, 3] x^k,
における x^(N-1) の係数に等しい。
∴ C[N+2, 3] = N(N+1)(N+2)/6.

なお 1/(1-x)^a = Σ[k=0,∞] C[k+a-1, a-1] x^k,
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.042s